Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 423-428    DOI: 10.3724/SP.J.1037.2009.00629
论文 Current Issue | Archive | Adv Search |
EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSITION BEHAVIOR OF Cu–RICH PARTICLES IN Cu–80%Pb HYPERMONOTECTIC ALLOY
ZHANG Lin; WANG Engang; ZUO Xiaowei; HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials; Ministry of Education; Northeastern University; Shenyang; 110004
Cite this article: 

ZHANG Lin WANG Engang ZUO Xiaowei HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSITION BEHAVIOR OF Cu–RICH PARTICLES IN Cu–80%Pb HYPERMONOTECTIC ALLOY. Acta Metall Sin, 2010, 46(4): 423-428.

Download:  PDF(2323KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu–80%Pb(mass fraction) hypermonotectic alloy with a dense distribution of Cu–rich particles was annealed at different temperatures under high magnetic field, the transition behavior of Cu–rich particles in solid–liquid mixture zone was investigated. The results show that, the transition behavior of Cu–rich particles occurs above 800 ℃, a compact segregation layer forms in the sample top above 900 ℃, the particle size and transition velocity increase with annealing temperature increasing. The Cu–rich particles grow and coalesce with each other during transiting, the coalescence mechanism is different from Cu–rich droplets. The clster of Cu–rich particles float up wholly, leave a clear boundary between Cu–rich particle and Cu–rich dendrite zones, the mutual interaction between the prticles makes the trnsition velocity decreased. The high magnetic field has effect on decreasing the transition velocity of Cu–rich particles, inhibiting the coarsening and coalescing of Cu–rich particles, which could decrease the segregation of Cu–rich particles, and inhibit the formation of compact Cu–rich segregation layers. Based on the mutual interaction between the particles, the acting forces on the Cu–rich particles and the final velocity have been analyzed and calculated to show the influence of magnetic field.

Key words:  Cu–Pb alloy      monotectic alloy      particle transition      high magnetic field     
Received:  21 September 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50574027 and 50901019), High Technology Research and Development Program of China (No.2007AA03Z519), Specialized Research Found for the Doctoral Program of Higher Education (No.20070145062), and 111 project (No.B07015)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00629     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/423

[1] Dhindaw B K. Stefanescu D M, Singh A K, Curreri P A. Metall Trans, 1988; 19A: 2839
[2] Liu Y, Guo J J, Jia J, Su Y Q, Ding H S. Acta Metall Sin, 2000; 36: 1233
(刘 源, 郭景杰, 贾均, 苏彦庆, 丁宏升. 金属学报, 2000; 36: 1233)
[3] Yang S, Liu W J, Jia J. Mater Sci Technol, 2002; 10: 19
(杨森, 刘文今, 贾均. 材料科学与工艺, 2002; 10: 19)
[4] Zu D Y, Yang X H, Han X M,Wei B B. Chin J Nonferrous Met, 2003; 13: 328
(朱定一, 杨晓华, 韩秀君, 魏炳波. 中国有色金属学报, 2003; 13: 328)
[5] Yasuda H, Ohnaka I, Kawakami O, Ueno K, Kishio K. ISIJ Int, 2003; 43: 942
[6] Zhao J Z, Li H L, Wang Q L, Zhao L, He J. Acta Metall Sin, 2009; 45: 1344
(赵九洲, 李海丽, 王青亮, 赵雷, 何杰. 金属学报, 2009; 45: 1344)
[7] Ratke L, Diefenbach S. Mate Sci Eng, 1995; R15: 263
[8] Zhao J Z, Li H L, Zhao L. Acta Metall Sin, 2009; 45: 1435
(赵九洲, 李海丽, 赵雷. 金属学报, 2009; 45: 1435)
[9] Zhang L, Wang E G, Zuo X W, He J C. Acta Metall Sin, 2008; 44: 165
(张林, 王恩刚, 左小伟, 赫冀成. 金属学报, 2008; 44: 165)
[10] Xu Z M, Li T X, Zhang X P, Zhou R H. J Shanghai Jiaotong Univ, 2001; 35: 668
(许振明, 李天晓, 张雪萍, 周尧和. 上海交通大学学报, 2001; 35: 668)
[11] Zhong Y B, Ren Z M, Sun Q X, Jiang Z W, Deng K, Xu K D. Acta Metall Sin, 2003; 39: 1269
(钟云波, 任忠鸣, 孙秋霞, 江志文, 邓康, 徐匡迪. 金属学报, 2003; 39: 1269)
[12] Shu D, Sun B, Li K, hou Y. Scr Mater, 2003; 48: 1385
[13] Colli F, Fabbri M, Negrini F, Asai S, Sassa K. Int J Comput Math Electr Electron Eng, 2003; 22: 58
[14] Zhang L, Yao G C, Jiao W L. J Northeastern Univ (Nat Sci), 2004; 25: 682
(张 磊, 姚广春, 焦万丽. 东北大学学报(自然科学版), 2004; 25: 682)
[15] Zhang L. PhD Dissertation, Northeastern University, Shenyang, 2008
(张 林. 东北大学博士学位论文, 沈阳, 2008)
[16] Ratke L, Voorhees P W. Growth and Coarsening. Berlin: Springer–Verlag, 2002: 1
[17] Walter H U, Vreeburg J P B. Fluid Sciences and Materials Science in Space. Berlin: Springer–Verlag, 1987: 1
[18] Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed., Oxford: Butterworth–Heinemann, 1998: 1
[19] Happel J. AIChE J, 1959; 5: 174
[20] Chester W. J Fluid Mech, 1957; 3: 304

[1] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[2] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[3] Jiuzhou ZHAO, Hongxiang JIANG. Progress in the Solidification of Monotectic Alloys[J]. 金属学报, 2018, 54(5): 682-700.
[4] Jianbo YU, Yuan HOU, Chao ZHANG, Zhibin YANG, Jiang WANG, Zhongming REN. Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy[J]. 金属学报, 2017, 53(12): 1620-1626.
[5] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[6] Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. EFFECT OF MICRO-ALLOYING ELEMENT Bi ON SOLIDIFICATION AND MICROSTRUCTURE OF Al-Pb ALLOY[J]. 金属学报, 2016, 52(4): 497-504.
[7] Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 799-806.
[8] ZHONG Hua, REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong, WANG Qiuliang. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(4): 473-482.
[9] CHEN Shu, ZHAO Jiuzhou. EFFECT OF Sn ON THE SOLIDIFICATION PROCESS AND MICROSTRUCTURE OF Al-Pb MONOTECTIC ALLOYS[J]. 金属学报, 2014, 50(5): 561-566.
[10] LI Guojian, WANG Zhen, WANG Qiang, WANG Huimin, DU Jiaojiao, MA Yonghui, HE Jicheng. EFFECT OF OXIDATION TIME UNDER HIGH MAG- NETIC FIELD ON THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF OXIDIZED Co-DOPED ZnO FILMS[J]. 金属学报, 2014, 50(12): 1538-1542.
[11] YANG Zhizeng, SUN Qian, ZHAO Jiuzhou. DIRECTIONAL SOLIDIFICATION OF MONOTECTIC COMPOSITION Al-Bi ALLOY[J]. 金属学报, 2014, 50(1): 25-31.
[12] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[13] CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. 金属学报, 2013, 49(5): 537-543.
[14] ZHAO Lei ZHAO Jiuzhou. STUDY OF THE SOLIDIFICATION OF Ni-Ag MONOTECTIC ALLOY[J]. 金属学报, 2012, 48(11): 1381-1386.
[15] XIA Zhixin ZHANG Chi YANG Zhigang. EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS[J]. 金属学报, 2011, 47(6): 713-719.
No Suggested Reading articles found!