Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (4): 418-422    DOI: 10.3724/SP.J.1037.2009.00800
论文 Current Issue | Archive | Adv Search |
A MODIFIED MODEL USED TO DESCRIBE AUSTENITE/MARTENSITE INTERFACE
CHENG Ning; GUO Zhenghong; MENG Qingping
School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240
Cite this article: 

CHENG Ning GUO Zhenghong MENG Qingping. A MODIFIED MODEL USED TO DESCRIBE AUSTENITE/MARTENSITE INTERFACE. Acta Metall Sin, 2010, 46(4): 418-422.

Download:  PDF(451KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A modified Landau polynomial was proposed to describe the structure features of austenite/martensite interface under the existence of an intrfacial preferrd state. When the elastic modulus of austenite, the energy of preferred state and thdriving force for martensitic transformation were selected as the variables, a transitional platform with a slow change in order parameter, i.e. scaled shear strain whose structure is neither austenite nor martensite, was found using Ginzburg–Landau theory. The energ and width of austenite/martensite interface were calculated. Based on these calculated results, some experimental phenomena during martensitic transformatin can be explaned perfectly. It is demonstrated that the current model is more universal.

Key words:  martensite      Landau theory      interface     
Received:  30 November 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50471014 and U0774011)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00800     OR     https://www.ams.org.cn/EN/Y2010/V46/I4/418

[1] Xu Z Y. Martensitic Transformation and Martensite. 2nd Ed., Beijing: Science Press, 1999: 725
(徐祖耀. 马氏体相变与马氏体. 第二版. 北京: 科学出版社. 1999: 725)
[2] Wechsler M. Trans AIME, 1953; 197: 1503
[3] Bowles J S, Mackenzie J K. Acta Metall, 1954; 2: 129
[4] Ma X, Pond R C. J Nucl Mater, 2007; 361: 313
[5] Pond R C, Ma X, Hirth J P. J Mater Sci, 2008; 43: 3881
[6] Pond R C, Celotto S, Hirth J P. Acta Mater, 2003; 51: 5385
[7] Pond R C, Ma X, Chai Y W, Hirth J P. In: Nabarro F R N, Hirth J P, eds., Dislocations in Solids, Vol.13, Amsterdam: Elsevier, 2007: 225
[8] Zhang W Z, Wu J. Mater Sci Eng, 2006; A438: 118
[9] Kajiwara S, Ogawa K, ikuchi T, Philos Mag Lett, 1996; 74: 405
[10] Ogawa K, Kajiwara S. Philos Mag, 2004; 84: 2919
[11] Ogawa K, Kajiwara S. Mater Sci Eng, 2006; A438–440(spec): 90
[12] Falk F. Z Phys, 1983; 51B: 177
[13] Jacobs A E. Phys Rev, 1985; 31B: 5984
[14] Xu Z Y. The Principles of Phase Transformation. Beijing: Science Press, 1988: 472
(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 472)
[15] Falk F. Acta Metall, 1980; 28: 1773
[16] Olson G B, Cohen M. In: Aaronson H I, Laughlin D E, Sekerka R F, Wayman C W, eds., Proceedings of International Conference on Solid to Solid Phase Transformation. Pittsburg: AIME, 1982: 1145
[17] Nakanishi N. Prog Mater Sci, 1980; 24: 143
[18] Prasetyo A, Reynaud F, Warlimont H. Acta Metall, 1976; 24: 1009
[19] Delaey L, van Paemel J, Struyve T. Scr Mater, 1972; 6: 507
[20] Kashida S, Kaga H. J Phys Soc Jpn, 1977; 42: 499
[21] Hasiguti R, Iwasaki K. J Appl Phys, 1968; 39: 2182
[22] Salama K, Alers G. J Appl Phys, 1968; 39: 4857
[23] Hausch G, Warlimont H. Acta Metall, 1973; 21: 401
[24] Cahn J W, Hilliard J E. J Chem Phys, 1958; 28: 258
[25] Muto S, Oshima R, Fujita F E. Acta Mater, 1990; 38: 685
[26] Shapiro S M, Yang B X, Shirane G, Noda Y, Tanner L E. Phys Rev Lett, 1989; 62: 1298
[27] Kaufman L P, Cohen M. Prog Met Phys, 1958; 7: 165
[28] Muto S, Takeda S, Oshima R, Fujita F E. J Phys, 1989; 1: 9971

[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[3] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[4] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[5] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[6] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[12] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[13] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[14] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[15] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
No Suggested Reading articles found!