Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 713-719    DOI: 10.3724/SP.J.1037.2011.00035
论文 Current Issue | Archive | Adv Search |
EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS
XIA Zhixin, ZHANG Chi, YANG Zhigang
Key Laboratory of Advanced Materials of Ministry of Education, Department of Materials Science and Engineering,
Tsinghua University, Beijing 100084
Cite this article: 

XIA Zhixin ZHANG Chi YANG Zhigang. EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS. Acta Metall Sin, 2011, 47(6): 713-719.

Download:  PDF(2642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The long–term exposition of reduced activation steels under high temperature and high magnetic field leads to the microstructural changes. And the microstructure evolution will damage the safety of fusion reactors. This work investigated the influence of high magnetic field on precipitation behavior and mechanical properties in reduced activation steels. As–quenched steels were tempered at 923 K for 3 h with and without a 10 T magnetic field. Tensile strength of the specimens tempered with a 10 T magnetic field decreased in comparison with the specimens tempered without magnetic field. The precipitation behaviors in reduced activation steels were also studied. The results indicated that the applied field could effectively prevent the directional growth of rod–shaped M23C6(M=Cr, W and Fe) carbides along martensite packet boundaries. The aspect ratio of M23C6 carbides decreased due to the increasing of the carbide/ferrite interfacial energy under the high magnetic field. Application of the Laner–Schwartz theoy to model metal carbide precipitation behavior under the magnetic field was described. The results indicated that the density of precipitates decreased and its mean size increased owing to an increase of the precipitate/ferrite interfacial energy. The model could predict the coarsening process of precipitates in reduced activation steels. Moreover, an improvement of the formula between yield strength and mean size of precipitates was also made.
Key words:  high magnetic field      reduced activation steel      carbide      interface energy      precipitation behavior     
Received:  14 January 2011     
ZTFLH: 

TG146.1

 
Fund: 

Supported by National Natural Science Foundation of China (No.51071090) and National Basic Research Program of China (No.2010CB731600)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00035     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/713

[1] Baluc N, Gelles D S, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Schaaf B van der, Yu J N. J Nucl Mater, 2007; 367: 33

[2] Hao X J, Ohtsuka H, Rango P D, Wada H. Mater Trans, 2003; 44: 211

[3] Choi J K, Ohtsuka H, Xu Y, Choo W Y. Scr Mater, 2000; 43: 221

[4] Kohno Y, Konishi Y, Konishi H, Shibata K, Wada H. Mater Sci Eng, 1999; A273: 21

[5] Zhou Z N, Wu K M. Scr Mater, 2009; 61: 670

[6] Zhang Y D, Zhao X, Bozzolo N, He C S, Zhuo L, Esling C. ISIJ Int, 2005; 45: 913

[7] Xia Z X, Zhang C, Yang Z G, Wang P H, Chen J M, Xu Z Y, Li X W, Liu S. Mater Sci Eng, 2010; A528: 657

[8] Xia Z X, Zhang C, Lan H, Liu Z Q, Yang Z G. Mater Lett, 2011; 65: 937

[9] Zhang Y D, Gey N, He C S, Zhao X, Esling C. Acta Mater, 2004; 52: 3467

[10] Hsu T Y. Theory of Phase Transformation. Beijing: Science Press of China, 1988: 35

(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 35)

[11] Jile D. Introduction to Magnetism and Magnetic Materials, London: Chapman & Hall, 1991: 254

[12] Langer J S, Schwartz A. Phys Rev, 1980; 21A: 948

[13] Xia Z X, Zhang C, Yang Z G. J Mater Sci, 2011; 46: 3151

[14] Fujii H, Tsurekawa S. Phys Rev, 2011; 83B: 054412

[15] Zhang C, Enomoto M, Yamashita T, Sano N. Metall Mater Trans, 2004; 35A: 1264

[16] Cahn J W, Hilliard J E. J Chem Phys, 1959; 31: 688

[17] Yang Z G, Enomoto M. Mater Sci Eng, 2002; A332: 184

[18] Johnson C A. Surf Sci, 1965; 3: 429

[19] Schneider A, Inden G. Acta Mater, 2005; 53: 519

[20] Yong Q L, Zheng L. Acta Metall Sin, 1984; 20: A9

(雍岐龙, 郑鲁. 金属学报, 1984; 20: A9)

[21] Ashby M F. Acta Metall, 1966; 14: 679

[22] Kelly A, Nicholson R B. Prog Mater Sci, 1963; 10: 151

[23] James L Maloney, Warren M Garrison Jr. Acta Mater, 2005; 53: 533
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[3] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[5] YANG Ke,LIANG Ye,YAN Wei,SHAN Yiyin. Preferential Distribution of Boron and its Effect on Microstructure and Mechanical Properties of (9~12)%Cr Martensitic Heat Resistant Steels[J]. 金属学报, 2020, 56(1): 53-65.
[6] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[7] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[8] HUANG Yu, CHENG Guoguang, LI Shijian, DAI Weixing. Precipitation Mechanism and Thermal Stability of Primary Carbide in Ce Microalloyed H13 Steel[J]. 金属学报, 2019, 55(12): 1487-1494.
[9] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
[10] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[11] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[12] Xirong LIU, Kai ZHANG, Shuang XIA, Wenqing LIU, Hui LI. Effects of Triple Junction and Grain Boundary Characters on the Morphology of Carbide Precipitation in Alloy 690[J]. 金属学报, 2018, 54(3): 404-410.
[13] Shuangming LI, Binqiang WANG, Zhenpeng LIU, Hong ZHONG, Rui HU, Yi LIU, Ximing LUO. Grain Orientation Competitive Growth of High Melting Point Metals Ir and Mo Under Electron Beam Floating Zone Melting[J]. 金属学报, 2018, 54(10): 1435-1441.
[14] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[15] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
No Suggested Reading articles found!