Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 561-566    DOI: 10.3724/SP.J.1037.2013.00351
Current Issue | Archive | Adv Search |
EFFECT OF Sn ON THE SOLIDIFICATION PROCESS AND MICROSTRUCTURE OF Al-Pb MONOTECTIC ALLOYS
CHEN Shu, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CHEN Shu, ZHAO Jiuzhou. EFFECT OF Sn ON THE SOLIDIFICATION PROCESS AND MICROSTRUCTURE OF Al-Pb MONOTECTIC ALLOYS. Acta Metall Sin, 2014, 50(5): 561-566.

Download:  HTML  PDF(6248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When a homogeneous, single-phase liquid of monotectic alloy is cooled into the miscibility gap, the components are no longer miscible and two liquid phases develop. Generally, the liquid-liquid decomposition causes the formation of the microstructure with serious phase segregation. Many efforts have been made to use the demixing phenomenon for the production of well dispersed composite materials. It has been demonstrated that the rapid directional solidification technique is an effective method to prevent the formation of the phase segregated microstructure in immiscible alloys. Directional solidification experiments were carried out to study the influence of the addition of Sn on the solidification process of Al-Pb alloys. The experimental results show that the addition of a small amount of Sn causes a decrease in the interface energy between the matrix and the minority phase liquids and, thus, an increase in the nucleation rate of the minority phase droplets during the liquid-liquid phase transformation or a decrease in the average size of the minority phase particles. With the increase of the Sn content, both the volume fraction of the minority phase droplets and the temperature range of the liquid-liquid phase zone and the liquid-liquid-solid tertiary phase zone of the phase diagram increase. These are favorable for the coarsening of the minority phase droplets. The addition of Sn leads to the formation of a dendrite solid/liquid interface. This may promote the formation of a well dispersed microstructure and shows great effect on the distribution of the minority phase particles.

Key words:  Al-Pb alloy      monotectic alloy      directional solidification     
Received:  25 June 2013     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China (Nos.51071159, 51271185 and 51031003)
About author:  null

陈书, 男, 1986 年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00351     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/561

Sample No. Al Pb Sn
1 97 3 0
2 99.95 3 0.05
3 96.5 3 0.5
4 96 3 1
5 95 3 2
表 1  Al-Pb-Sn 合金试样的化学成分
Fig.1  

Al-3Pb-xSn (x=0, 0.05, 0.5, 1, 2, 质量分数, %)合金以5 mm/s速率定向凝固后的SEM像

Fig.2  

定向凝固Al-3Pb-1Sn合金组织中粒子的尺寸分布

Fig.3  

定向凝固Al-3Pb-xSn合金组织中初生粒子和偏晶粒子平均半径<R>随Sn含量的变化

Fig.4  

Al-3Pb-xSn (x=0, 2)合金以5 mm/s速率定向凝固后的宏观形貌

Fig.5  

Al-Pb-Sn偏晶合金凝固过程示意图

Fig.6  

Al-Pb-Sn三元偏晶合金垂直截面(Al-3Pb-xSn)图

[1] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K. Science, 2002; 297: 990
[2] Li H L, Zhao J Z. Acta Metall Sin, 2011; 47: 87
(李海丽, 赵九洲. 金属学报, 2011; 47: 87)
[3] Rudrakshi G B, Srivastava V C, Pathak J P, Ojha S N. Mater Sci Eng, 2004; A383: 30
[4] Liu Y, Guo J J, Jia J, Su Y Q, Ding H S. Acta Metall Sin, 2001; 37: 917
(刘 源, 郭景杰, 贾 均, 苏彦庆, 丁宏升. 金属学报, 2001; 37: 917)
[5] Zhao J Z, Ratke L. Scr Mater, 1998; 39: 181
[6] Wang N, Wei B B. Mater Sci Eng, 2003; A345: 145
[7] Zhao J Z, Ratke L. Z Metallkd, 1998; 89: 241
[8] Zhu M, Gao Y, Chung C Y, Che Z X, Lou K C, Li B L. Wear, 2000; 242: 47
[9] Zhao J Z. Acta Metall Sin, 2002; 38: 525
(赵九洲. 金属学报, 2002; 38: 525)
[10] Prinz B, Romero A, Ratke L. J Mater Sci, 1995; 30: 4715
[11] Grugel R G. Metall Trans, 1991; 22B: 339
[12] Chan J W. Metall Trans, 1979; 10A: 119
[13] Zhao J Z, Ratke L, Jia J, Li Q C. J Mater Sci Technol, 2002; 18: 197
[14] Shi R P, Wang Y, Wang C P, Liu X J. Appl Phys Lett, 2011; 98: 204106
[15] Wang W L, Li Z Q, Wei B. Acta Mater, 2011; 59: 5482
[16] Schaffer P L, Mathiesen R H, Arnberg L. Acta Mater, 2009; 57: 2887
[17] Kaban I, Köhler M, Ratke L, Hoyer W, Mattern N, Eckert J, Greer A L. Acta Mater, 2011; 59: 6880
[18] Wu M H, Ludwig A, Ratke L. Metall Mater Trans, 2003; 34A: 3009
[19] Carlberg T, fredriksson H. Metall Trans, 1980; 11A: 1665
[20] Guo J J, Liu Y, Su Y Q, Ding H S, Zhao J Z, Xue X. Scr Mater, 2001; 45: 1197
[21] He J, Zhao J Z. Mater Sci Eng, 2005; A404: 85
[22] Nestler B, Wheeler A A, Garcke H. Comput Mater Sci, 2003; 26: 111
[23] He J. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006
(何 杰. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[24] Lukas H L,Fries S G,Sundman B. Computational Thermodynamics: The Calphad Method. Cambridge: Cambridge University Press, 2007: 101
[25] Shim J H, Lee H N, Ha H P, Cho Y W, Yoon E P. J Alloys Compd, 2001; 327: 270
[26] Dinsdale A T. Calphad, 1991; 15: 317
[27] Liu Y J, Liang D. J Alloys Compd, 2005; 403: 110
[28] Yu S K, Sommer F, Predel B. Z Metallkd, 1996; 87: 574
[29] Miettinen J. Metall Mater Trans, 2002; 33A: 1639
[30] Ohtani H, Okuda K, Ishida K. J Phase Equilib, 1995; 16: 416
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[8] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[10] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[11] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[12] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[13] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[14] Jiuzhou ZHAO, Hongxiang JIANG. Progress in the Solidification of Monotectic Alloys[J]. 金属学报, 2018, 54(5): 682-700.
[15] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
No Suggested Reading articles found!