|
|
Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications |
OUYANG Sihui1,2,3, SHE Jia1,2,3, CHEN Xianhua1,2( ), PAN Fusheng1,2 |
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China 2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 3 Lanxi Magnesium Materials Research Institute, Lanxi 321100, China |
|
Cite this article:
OUYANG Sihui, SHE Jia, CHEN Xianhua, PAN Fusheng. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications. Acta Metall Sin, 2025, 61(3): 455-474.
|
Abstract Biodegradable Mg-based materials have emerged as a promising class of orthopedic implants in the 21st century, owing to their excellent osteogenic properties and an elastic modulus similar to that of cortical bone. This review summarizes the current applications and development trends of Mgbased composites in bone repair. First, the fabrication methods of Mg-based composites, along with their advantages and disadvantages, are discussed. Second, the impact of reinforcement on the mechanical properties and degradation behavior of these composites is examined. Third, preclinical studies on the use of Mg-based composites in fracture fixation and bone defect repair are reviewed, confirming their bioactivity and clinical safety. Fourth, the effects of the degradation behavior of Mg-based composites on stem cell osteogenic differentiation and the related molecular mechanisms are explored. Finally, the challenges of applying Mg-based composites for bone repair based on existing preclinical studies are outlined, and potential future advancements are proposed.
|
Received: 29 October 2024
|
|
Fund: National Funds for Distinguished Young Scholars(52225101);National Natural Science Foundation of China(52301132);Fundamental Research Funds for the Central Universities(2023CDJYXTD-002) |
Corresponding Authors:
CHEN Xianhua, professor, Tel: (023)65102633, E-mail: xhchen@cqu.edu.cn
|
1 |
Ledet E H, Liddle B, Kradinova K, et al. Smart implants in orthopedic surgery, improving patient outcomes: A review [J]. Innov. Entrep. Health, 2018, 5: 41
|
2 |
Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4
pmid: 9839998
|
3 |
Minetto M A, Giannini A, McConnell R, et al. Common musculoskeletal disorders in the elderly: The star triad [J]. J. Clin. Med., 2020, 9: 1216
|
4 |
Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects [J]. J. Magnes. Alloy., 2022, 10: 627
|
5 |
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Mater. Sci. Eng., 2019, C102: 844
|
6 |
Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
|
李述军, 侯文韬, 郝玉琳 等. 3D打印医用钛合金多孔材料力学性能研究进展 [J]. 金属学报, 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
|
7 |
Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
|
8 |
Azadani M N, Zahedi A, Bowoto O K, et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications [J]. Prog. Biomater., 2022, 11: 1
doi: 10.1007/s40204-022-00182-x
pmid: 35239157
|
9 |
Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
|
|
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
|
10 |
Payr E. Beitrage zur technik der blutgesfass und nervennaht nebst mittheilungen die verwendung eines resorbierharen metalles in der chirurgie [J]. Arch. Klin. Chir., 1900, 62: 67
|
11 |
Costello R B, Elin R J, Rosanoff A, et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come [J]. Adv. Nutr., 2016, 7: 977
doi: 10.3945/an.116.012765
pmid: 28140318
|
12 |
Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study [J]. BioMed. Eng. Online, 2013, 12: 62
doi: 10.1186/1475-925X-12-62
pmid: 23819489
|
13 |
Lee J W, Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy [J]. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 716
|
14 |
Delsmann M M, Stürznickel J, Kertai M, et al. Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—A radiographic analysis [J]. Arch. Orthop. Trauma Surg., 2023, 143: 2297
|
15 |
Jungesblut O D, Moritz M, Spiro A S, et al. Fixation of unstable osteochondritis dissecans lesions and displaced osteochondral fragments using new biodegradable magnesium pins in adolescents [J]. Cartilage, 2021, 13: 302S
|
16 |
Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
|
17 |
Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures [J]. J. Orthop. Translat., 2021, 27: 96
|
18 |
Wang X L, Wang C, Chu C L, et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications [J]. Bioact. Mater., 2024, 39: 74
doi: 10.1016/j.bioactmat.2024.05.024
pmid: 38783927
|
19 |
Han H S, Jun I, Seok H K, et al. Biodegradable magnesium alloys promote angio‐osteogenesis to enhance bone repair [J]. Adv. Sci., 2020, 7: 2000800
|
20 |
Tsakiris V, Tardei C, Clicinschi F M. Biodegradable Mg alloys for orthopedic implants—A review [J]. J. Magnes. Alloy., 2021, 9: 1884
doi: 10.1016/j.jma.2021.06.024
|
21 |
Krishnan R, Pandiaraj S, Muthusamy S, et al. Biodegradable magnesium metal matrix composites for biomedical implants: Synthesis, mechanical performance, and corrosion behavior—A review [J]. J. Mater. Res. Technol., 2022, 20: 650
|
22 |
Vignesh P, Ramanathan S, Ashokkumar M, et al. Microstructure, mechanical, and electrochemical corrosion performance of Ti/HA (hydroxyapatite) particles reinforced Mg-3Zn squeeze casted composites [J]. Inter. J. Metalcast., 2024, 18: 1348
|
23 |
Zhang Y Z, Dong B X, Wang C G, et al. Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites [J]. J. Mater. Res. Technol., 2024, 30: 3152
|
24 |
Akbarzadeh F Z, Sarraf M, Ghomi E R, et al. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications [J]. J. Magnes. Alloy., 2024, 12: 2569
|
25 |
Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309
|
26 |
Gu X N, Zhou W R, Zheng Y F, et al. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites [J]. Mater. Sci. Eng., 2010, C30: 827
|
27 |
Munir K, Wen C E, Li Y C. Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 269
|
28 |
Yu H, Zhou H P, Sun Y, et al. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy [J]. Adv. Powder Technol., 2018, 29: 3241
|
29 |
Xu Y, Meng D W, Cheng Y Y, et al. Simultaneous improvement of the strength and plasticity for Ti-reinforced fine-grained magnesium matrix composites prepared by powder metallurgy [J]. Adv. Eng. Mater., 2024, 26: 2301349
|
30 |
Dinaharan I, Zhang S, Chen G Q, et al. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing [J]. Mater. Sci. Eng., 2020, A772: 138793
|
31 |
Radha R, Sreekanth D. Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 452
doi: 10.1016/j.jma.2019.05.010
|
32 |
Suslick K S, Price G J. Applications of ultrasound to materials chemistry [J]. Annu. Rev. Mater. Sci., 1999, 29: 295
|
33 |
Nie K B, Wang X J, Deng K K, et al. Magnesium matrix composite reinforced by nanoparticles—A review [J]. J. Magnes. Alloy., 2021, 9: 57
doi: 10.1016/j.jma.2020.08.018
|
34 |
Nie K B, Wang X J, Wu K, et al. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration [J]. J. Alloys Compd., 2011, 509: 8664
|
35 |
Chen G, Song J F, Yang H, et al. The microstructures and mechanical properties of low-cost Ti particles reinforced AZ81 composites [J]. J. Mater. Res. Technol., 2024, 29: 3494
|
36 |
Lan J, Yang Y, Li X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
|
37 |
Xiang S L, Wang X J, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
doi: 10.1038/srep38824
pmid: 27941839
|
38 |
Wang X J, Wang N Z, Wang L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing [J]. Mater. Des., 2014, 57: 638
|
39 |
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
|
40 |
Nie K B, Guo Y C, Deng K K, et al. High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature [J]. J. Alloys Compd., 2019, 792: 267
|
41 |
Jayalakshmi S, Singh R A, Sankaranarayanan S, et al. Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique [J]. Mater Today: Proc., 2018, 5: 16280
|
42 |
Sekar P, Panigrahi S K. Understanding the corrosion and bio-corrosion behaviour of magnesium composites—A critical review [J]. J. Magnes. Alloy., 2024, 12: 890
|
43 |
Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
|
44 |
Chen Y, Tekumalla S, Guo Y B, et al. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel [J]. Sci. Rep., 2016, 6: 32395
doi: 10.1038/srep32395
pmid: 27572903
|
45 |
Pahaul A, Johanes M, Gupta M. A first-time addition of selenium to a Mg-based metal matrix composite for biomedical purposes [J]. J. Compos. Sci., 2024, 8: 81
|
46 |
Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
|
47 |
Majumdar T, Eisenstein N, Frith J E, et al. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint [J]. Adv. Eng. Mater., 2018, 20: 1800172
|
48 |
Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability [J]. Mater. Today Commun., 2021, 26: 101922
|
49 |
Zhang X C, Shi H L, Wang X J, et al. Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing [J]. J. Alloys Compd., 2023, 938: 168567.
|
50 |
Oropeza D, Hart A J. Reactive binder jet additive manufacturing for microstructural control and dimensional stability of ceramic materials [J]. Addit. Manuf., 2021, 48: 102448
|
51 |
Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding [J]. J. Magnes. Alloy., 2021, 9: 192
|
52 |
Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
|
|
唐伟能, 莫 宁, 侯 娟. 增材制造镁合金技术现状与研究进展 [J]. 金属学报, 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
|
53 |
Zhang C H, Li Z, Zhang J K, et al. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives [J]. J. Magnes. Alloy., 2023, 11: 425
|
54 |
Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
|
|
彭立明, 邓庆琛, 吴玉娟 等. 镁合金选区激光熔化增材制造技术研究现状与展望 [J]. 金属学报, 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
|
55 |
Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution [J]. J. Mater. Res., 2018, 33: 2752
|
56 |
Shuai C J, Wang B, Yang Y W, et al. 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties [J]. Composites, 2019, 162B: 611
|
57 |
Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. J. Magnes. Alloy., 2020, 8: 952
|
58 |
Salehi M, Kuah K X, Huang Z H, et al. Enhancing densification in binder jet additive manufacturing of magnesium via nanoparticles as sintering aids [J]. J. Manuf. Process., 2023, 99: 705
|
59 |
Dutta S, Gupta S, Roy M. Recent developments in magnesium metal-matrix composites for biomedical applications: A review [J]. ACS Biomater. Sci. Eng., 2020, 6: 4748
doi: 10.1021/acsbiomaterials.0c00678
pmid: 33455211
|
60 |
Shahin M, Munir K, Wen C E, et al. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives [J]. Acta Biomater., 2019, 96: 1
doi: S1742-7061(19)30417-9
pmid: 31181263
|
61 |
Nguyen Q B, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates [J]. Compos. Sci. Technol., 2008, 68: 2185
|
62 |
Seshadhri V, Sarala R, Alagarsamy S V, et al. Mechanical, biodegradability and biocompatibility behaviour of seashell and ZrO2 particulates reinforced AZ31 Mg composites [J]. Ceram. Int., 2024, 50: 15613
|
63 |
Verma V, Singh S, Pal K. Exploring the potential of Mg-Zn-Mn-Ca/ZnO composites as a biodegradable alternative for fracture fixation: Microstructural, mechanical, and in-vitro biocompatibility analysis [J]. Compos. Struct., 2023, 323: 117431
|
64 |
Liu H Y, Han T L, Li Q K, et al. Novel microstructures inducing an excellent combination of strength and elongation in in-situ MgO/AZ31 composites [J]. Compos. Struct., 2022, 294: 115770
|
65 |
Meenashisundaram G K, Wang N Y, Maskomani S, et al. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg [J]. Mater. Sci. Eng., 2020, C108: 110478
|
66 |
Chen L, Xia H G, Chen P, et al. Corrosion behavior of embedded perforated biodegradable Mg/Fe composite plate [J]. J. Mater. Eng. Perform., 2022, 31: 9740
|
67 |
Wong W L E, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67: 1541
|
68 |
Khanra A K, Jung H C, Hong K S, et al. Comparative property study on extruded Mg-HAP and ZM61-HAP composites [J]. Mater. Sci. Eng., 2010, A527: 6283
|
69 |
Cui Z Q, Zhang Y K, Cheng Y L, et al. Microstructure, mechanical, corrosion properties and cytotoxicity of beta-calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering [J]. Mater. Sci. Eng., 2019, C99: 1035
|
70 |
Fathi M H, Meratian M, Razavi M. Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior [J]. J. Biomed. Nanotechnol., 2011, 7: 441
pmid: 21830486
|
71 |
Abazari S, Shamsipur A, Bakhsheshi-Rad H R, et al. Functionalized carbon nanotube-encapsulated magnesium-based nanocomposites with outstanding mechanical and biological properties as load-bearing bone implants [J]. Mater. Des., 2022, 213: 110354
|
72 |
Rashad M, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111
|
73 |
Del Campo R, Savoini B, Muñoz A, et al. Mechanical properties and corrosion behavior of Mg-HAP composites [J]. J. Mech. Behav. Biomed. Mater., 2014, 39: 238
doi: 10.1016/j.jmbbm.2014.07.014
pmid: 25146678
|
74 |
Saberi A, Baltatu M S, Vizureanu P. Recent advances in magnesium-magnesium oxide nanoparticle composites for biomedical applications [J]. Bioengineering, 2024, 11: 508
|
75 |
Tang C K, Lyu S Y, Zhao Z H, et al. Effects of MgO nano particles on the mechanical properties and corrosion behavior of Mg-Zn-Ca alloy [J]. Mater. Chem. Phys., 2023, 297: 127380
|
76 |
Yang W J, Tong Q Y, He C X, et al. Mechanically propelled ion exchange regulates metal/bioceramic interface characteristics to improve the corrosion resistance of Mg composite for orthopedic applications [J]. Ceram. Int., 2024, 50: 23124
|
77 |
Khalajabadi S Z, Kadir M R A, Izman S, et al. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications [J]. Mater. Des., 2015, 88: 1223
|
78 |
Esen Z, Öcal E B, Akkaya A, et al. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites [J]. Corros. Sci., 2020, 166: 108470
|
79 |
Qin J Y, Li X Q, Jin P P, et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite [J]. Acta Metall. Sin., 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
|
|
覃嘉宇, 李小强, 金培鹏 等. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究 [J]. 金属学报, 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
|
80 |
Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloy. Compd., 2020, 821: 153379
|
81 |
Jaiswal S, Kumar R M, Gupta P, et al. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 442
doi: S1751-6161(17)30518-0
pmid: 29232643
|
82 |
Yang Y W, Lu C F, Shen L D, et al. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing [J]. J. Magnes. Alloy., 2023, 11: 629
|
83 |
Cui Z Q, Li W J, Cheng L X, et al. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering [J]. Mater. Charact., 2019, 151: 620
|
84 |
Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomaterials, 2007, 28: 2163
pmid: 17276507
|
85 |
Cheng P F, Han P, Zhao C L, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF [J]. Biomaterials, 2016, 81: 14
doi: S0142-9612(15)00981-3
pmid: 26713681
|
86 |
Wang J L, Xu J K, Song B, et al. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits [J]. Acta Biomater., 2017, 63: 393
doi: S1742-7061(17)30582-2
pmid: 28919510
|
87 |
Han P, Cheng P F, Zhang S X, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J]. Biomaterials, 2015, 64: 57
|
88 |
Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing [J]. Acta Biomater., 2015, 18: 262
doi: 10.1016/j.actbio.2015.02.010
pmid: 25712384
|
89 |
Jähn K, Saito H, Taipaleenmäki H, et al. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice [J]. Acta Biomater., 2016, 36: 350
doi: 10.1016/j.actbio.2016.03.041
pmid: 27039975
|
90 |
Farraro K F, Sasaki N, Woo S L Y, et al. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint [J]. J. Orthop. Res., 2016, 34: 2001
doi: 10.1002/jor.23210
pmid: 26916011
|
91 |
Zhang Z Z, Zhou Y F, Li W P, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: A proof-of-concept study [J]. Am. J. Sports Med., 2019, 47: 954
|
92 |
Zhang B X, Zhang W, Zhang F, et al. Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model [J]. J. Magnes. Alloy., 2024, 12: 384
|
93 |
Chen Y D, Sun Y, Wu X H, et al. Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model [J]. J. Orthop. Translat., 2022, 35: 62
|
94 |
Hamushan M, Cai W J, Zhang Y B, et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling [J]. Bioact. Mater., 2021, 6: 1563
doi: 10.1016/j.bioactmat.2020.11.008
pmid: 33294734
|
95 |
Gonzalez J, Hou R Q, Nidadavolu E P S, et al. Magnesium degradation under physiological conditions—Best practice [J]. Bioact. Mater., 2018, 3: 174
doi: 10.1016/j.bioactmat.2018.01.003
pmid: 29744455
|
96 |
Wang J L, Xu J K, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics—A general review and perspectives [J]. Adv. Sci., 2020, 7: 1902443
|
97 |
Grünewald T A, Rennhofer H, Hesse B, et al. Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone [J]. Biomaterials, 2016, 76: 250
doi: 10.1016/j.biomaterials.2015.10.054
pmid: 26546917
|
98 |
Guo J D, Li L, Shi Y M, et al. Hydrogen water consumption prevents osteopenia in ovariectomized rats [J]. Br. J. Pharmacol., 2013, 168: 1412
|
99 |
Noviana D, Paramitha D, Ulum M F, et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats [J]. J. Orthop. Translat., 2016, 5: 9
|
100 |
Maradze D, Musson D, Zheng Y F, et al. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling [J]. Sci. Rep., 2018, 8: 10003
doi: 10.1038/s41598-018-28476-w
pmid: 29968794
|
101 |
Zhang Y F, Xu J K, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat. Med., 2016, 22: 1160
doi: 10.1038/nm.4162
pmid: 27571347
|
102 |
Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation [J]. Acta Biomater., 2014, 10: 2834
doi: 10.1016/j.actbio.2014.02.002
pmid: 24512978
|
103 |
Hung C C, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway [J]. Acta Biomater., 2019, 98: 246
|
104 |
Wang W Z, Wang L, Zhang B Q, et al. 3D printing of personalized magnesium composite bone tissue engineering scaffold for bone and angiogenesis regeneration [J]. Chem. Eng. J., 2024, 484: 149444
|
105 |
Zhai Z J, Qu X H, Li H W, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling [J]. Biomaterials, 2014, 35: 6299
doi: 10.1016/j.biomaterials.2014.04.044
pmid: 24816285
|
106 |
Qiao W, Wong K H M, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration [J]. Nat. Commun., 2021, 12: 2885
doi: 10.1038/s41467-021-23005-2
pmid: 34001887
|
107 |
Liang L X, Lin Z J, Duan Z Q, et al. Enhancing the immunomodulatory osteogenic properties of Ti-Mg alloy by Mg2+-containing nanostructures [J]. Regen. Biomater., 2024, 11: rbae104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|