Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications
OUYANG Sihui1,2,3, SHE Jia1,2,3, CHEN Xianhua1,2(), PAN Fusheng1,2
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China 2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 3 Lanxi Magnesium Materials Research Institute, Lanxi 321100, China
Cite this article:
OUYANG Sihui, SHE Jia, CHEN Xianhua, PAN Fusheng. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications. Acta Metall Sin, 2025, 61(3): 455-474.
Biodegradable Mg-based materials have emerged as a promising class of orthopedic implants in the 21st century, owing to their excellent osteogenic properties and an elastic modulus similar to that of cortical bone. This review summarizes the current applications and development trends of Mgbased composites in bone repair. First, the fabrication methods of Mg-based composites, along with their advantages and disadvantages, are discussed. Second, the impact of reinforcement on the mechanical properties and degradation behavior of these composites is examined. Third, preclinical studies on the use of Mg-based composites in fracture fixation and bone defect repair are reviewed, confirming their bioactivity and clinical safety. Fourth, the effects of the degradation behavior of Mg-based composites on stem cell osteogenic differentiation and the related molecular mechanisms are explored. Finally, the challenges of applying Mg-based composites for bone repair based on existing preclinical studies are outlined, and potential future advancements are proposed.
Fund: National Funds for Distinguished Young Scholars(52225101);National Natural Science Foundation of China(52301132);Fundamental Research Funds for the Central Universities(2023CDJYXTD-002)
Corresponding Authors:
CHEN Xianhua, professor, Tel: (023)65102633, E-mail: xhchen@cqu.edu.cn
Fig.1 Schematic of the preparation process of nano-diamond (ND) reinforced ZK60 composite via powder metallurgy[25] (F—force) (a) and microstructures[25,29] (b-d) (b) SEM image of ND/ZK60 composite, corresponding grain size distribution, and TEM and high-resolution TEM (HRTEM) images at the interface[25] (Inset in Fig.1b is selected area electron diffraction (SAED) pattern in the corresponding region) (c) schematic of the preparation process of Ti/AZ61 composite prepared by spark plasma sintering (SPS)[29] (d) electron backscatter diffraction (EBSD) and SEM images and kernel average misorientation (KAM) results of Ti/AZ61 composite (LAGBs—low angle grain boundaries, HAGBs—high angle grain boundaries)[29]
Fig.2 Schematics of the ultrasonic-assisted stir casting process[33] (a) and ultrasonic-assisted semi-solid stirring method for preparing graphene-reinforced Mg-based composites[37] (b) and microstructures and mechanical properties[39,40] (c, d) (c) SEM image of nano-SiC reinforced Mg-Zn-based composites; Fourier-filtered atomic-resolution TEM image of SiC/Mg interface; compression engineering stress-strain curve and in situ SEM images of micro-pillar tests (Insets in Fig.2c are the fast Fourier transforms (FFT) of the magnesium matrix (left) and the SiC nanoparticle (right), respectively)[39] (d) comparisons of mechanical properties of Mg-based composites (Inset in Fig.2d is SEM image of extruded nano-TiC reinforced Mg-Zn-Ca composites; σUTS—ultimate tensile strength, σys—yield strength)[40]
Fig.3 Schematic of the disintegrated melt deposition process[42] (a) and SEM image and compressive stress-strain curve of ZnO/Mg-4Zn-3Gd-1Ca composites[44] (b) (Eng.—engineering)
Fig.4 Schematics of the selective laser melting process[48] (a), electron beam additive manufacturing process[49] (b), binder jetting additive manufacturing process[50] (c), and wire arc additive manufacturing process[51] (GTAW—gas tungsten arc welding) (d)
cell proliferation and osteoblastic differentiation, and reduces the
release of Mg2+
Bone joint, bone screw, and pins
[68]
phosphate
β-TCP
σUCS = 402 MPa, ε = 12.0%
Enhance bone adhesion and bone growth
Bone pin, bone screw
[69]
CPP
E = 48 GPa, σys = 320 MPa, σUTS = 337 MPa
Induce osteoblastic differentiation, do not cause inflammation, higher protein adsorption, and nontoxic to tissues
Bone tissue and joint replacements, dental implant
[60]
FA
σys = 107 MPa, σUCS = 123 MPa, ε = 5.0%
Enhance cell viability and osteoconductivity
Bone graft
[70]
Graphite
CNTs
σys = 245 MPa, σUCS = 390 MPa, ε = 15.7%
Biocompatible even in blood contact, no tissue reaction, and nontoxic to cells
Bone screw, bone plates
[71]
GNPs
σys = 230 MPa, σUTS = 407 MPa, ε = 13.0%
Hemocompatibility, cytocompatibility, and good antibacterial properties
Bone screw, bone plates
[72]
Table 1 Classifications of reinforcements in Mg-based composites and corresponding mechanical and biological properties of the composites for biomedical applications[60-72]
Fig.5 Microstructure, corrosion behavior, and mechanical properties of biomedical Mg-based composites[69,71,77] (a) SEM images, corrosion weight loss rate, and corrosion mechanism schematic of β-TCP/ZK61 composites[69] (b) surface morphologies, corrosion weight loss rate, and electrochemical polarization curves of MgO/HA/Mg compo-sites after immersion in simulated body fluid (SBF) for 168 h[77] (c) SEM images of crack propagation, dislocation slip schematic, mechanical properties, and electrochemical performance of CNTs/Mg-3Zn composites[71] (UCS—ultimate compressive strength; * represents P < 0.05)
Fig.6 Invitro cell viability tests of Mg-based composites (a) cell viability, SEM images, and fluorescence images of human fetal osteoblast progenitor (hFOB) cell lines cultured on HA/Mg-3Zn composites[81] (b) cell viabilities and OM images of mouse fibroblast (L-929) cell lines cultured on β-TCP/ZK61 composites[69] (c) cell viabilities and live/dead staining images of human osteosarcoma (MG-63) cells cultured on BG/ZK60 composites[82] (BG—bioactive glass, MBG—mesporous bioative glass)
Fig.7 In vivo animal experiments of biomedical Mg-based composites (HP represents high-purity; black arrows represent semitendinosus, white arrow represent HP Mg-based screw; BMP-2 represents bone morphogenetic protein-2, VEGF represents vascular endothelial growth factor, GAPDH represents glyceraldehyde-3-phosphate dehydrogenase, BMSCs represent bone marrow mesenchymal stem cells) (a) magnesium-based screw used for tendon-bone interface healing[85] (b) Mg-based interference screw used for tendon fixation[86] (c) Mg-based screw used for fixation of distal femur fracture[87] (d) Mg-based screw and plate system used for ulna fracture fixation[88] (e) Mg-based intramedullary nail used for fixation of femoral shaft fracture[89] (f) Mg-based ring used for anterior cruciate ligament (ACL) reconstruction[90] (g) Mg-based wire promoting meniscus regeneration[91] (h) Mg-based suture anchor and Mg-based wire used for rotator cuff tear repair[92,93]
Fig.8 Schematic of the degradation behavior of Mg-based composite implants under physiological conditions and the diffusion of released Mg2+[95,96] (a), reaction of Mg-based screws with surrounding bone tissue and cells after implantation[100] (ALP—alkaline phosphatase) (b), and release of Mg2+ from Mg-based intramedullary nails promoting periosteal stem cell (PSC) activation of calcitonin gene-related differentiation and enhancing hypoxia-inducible factor (HIF) expression in BMSCs[96,101,102] (c) (HSC—hematopoietic stem cell, CGRP—calcitonin gene related peptide, DRG—dorsal root ganglion, PDSC—periostem-derived stem cell, TRPM7—transient receptor potential melastatin 7, MagT1—magnesium transporter 1, cAMP—cyclic adenosine monophosphate, CREB—cAMP response element-binding protein, NFAT—nuclear factor of activated T-cells, PGC-1α—peroxisome proliferator-activated receptor gamma coactivator 1-Alpha, ERRα—estrogen-related receptor Alpha, BMP-2—bone morphogenetic protein 2, GAG—glycosaminoglycan, RANKL—receptor activator of nuclear factor-κB ligand)
1
Ledet E H, Liddle B, Kradinova K, et al. Smart implants in orthopedic surgery, improving patient outcomes: A review [J]. Innov. Entrep. Health, 2018, 5: 41
2
Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4
pmid: 9839998
3
Minetto M A, Giannini A, McConnell R, et al. Common musculoskeletal disorders in the elderly: The star triad [J]. J. Clin. Med., 2020, 9: 1216
4
Bairagi D, Mandal S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects [J]. J. Magnes. Alloy., 2022, 10: 627
5
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Mater. Sci. Eng., 2019, C102: 844
6
Li S J, Hou W T, Hao Y L, et al. Research progress on the mechanical properties of the biomedical titanium alloy porous structures fabricated by 3D printing technique [J]. Acta Metall. Sin., 2023, 59: 478
doi: 10.11900/0412.1961.2022.00566
Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications [J]. Mater. Sci. Eng., 2016, C68: 948
8
Azadani M N, Zahedi A, Bowoto O K, et al. A review of current challenges and prospects of magnesium and its alloy for bone implant applications [J]. Prog. Biomater., 2022, 11: 1
doi: 10.1007/s40204-022-00182-x
pmid: 35239157
9
Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
doi: 10.11900/0412.1961.2018.00032
Payr E. Beitrage zur technik der blutgesfass und nervennaht nebst mittheilungen die verwendung eines resorbierharen metalles in der chirurgie [J]. Arch. Klin. Chir., 1900, 62: 67
11
Costello R B, Elin R J, Rosanoff A, et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come [J]. Adv. Nutr., 2016, 7: 977
doi: 10.3945/an.116.012765
pmid: 28140318
12
Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study [J]. BioMed. Eng. Online, 2013, 12: 62
doi: 10.1186/1475-925X-12-62
pmid: 23819489
13
Lee J W, Han H S, Han K J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy [J]. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 716
14
Delsmann M M, Stürznickel J, Kertai M, et al. Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—A radiographic analysis [J]. Arch. Orthop. Trauma Surg., 2023, 143: 2297
15
Jungesblut O D, Moritz M, Spiro A S, et al. Fixation of unstable osteochondritis dissecans lesions and displaced osteochondral fragments using new biodegradable magnesium pins in adolescents [J]. Cartilage, 2021, 13: 302S
16
Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
17
Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures [J]. J. Orthop. Translat., 2021, 27: 96
18
Wang X L, Wang C, Chu C L, et al. Structure-function integrated biodegradable Mg/polymer composites: Design, manufacturing, properties, and biomedical applications [J]. Bioact. Mater., 2024, 39: 74
doi: 10.1016/j.bioactmat.2024.05.024
pmid: 38783927
19
Han H S, Jun I, Seok H K, et al. Biodegradable magnesium alloys promote angio‐osteogenesis to enhance bone repair [J]. Adv. Sci., 2020, 7: 2000800
20
Tsakiris V, Tardei C, Clicinschi F M. Biodegradable Mg alloys for orthopedic implants—A review [J]. J. Magnes. Alloy., 2021, 9: 1884
doi: 10.1016/j.jma.2021.06.024
21
Krishnan R, Pandiaraj S, Muthusamy S, et al. Biodegradable magnesium metal matrix composites for biomedical implants: Synthesis, mechanical performance, and corrosion behavior—A review [J]. J. Mater. Res. Technol., 2022, 20: 650
22
Vignesh P, Ramanathan S, Ashokkumar M, et al. Microstructure, mechanical, and electrochemical corrosion performance of Ti/HA (hydroxyapatite) particles reinforced Mg-3Zn squeeze casted composites [J]. Inter. J. Metalcast., 2024, 18: 1348
23
Zhang Y Z, Dong B X, Wang C G, et al. Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites [J]. J. Mater. Res. Technol., 2024, 30: 3152
24
Akbarzadeh F Z, Sarraf M, Ghomi E R, et al. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications [J]. J. Magnes. Alloy., 2024, 12: 2569
25
Li X Q, Ma G J, Jin P P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy [J]. J. Alloys Compd., 2019, 778: 309
26
Gu X N, Zhou W R, Zheng Y F, et al. Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites [J]. Mater. Sci. Eng., 2010, C30: 827
27
Munir K, Wen C E, Li Y C. Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 269
28
Yu H, Zhou H P, Sun Y, et al. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy [J]. Adv. Powder Technol., 2018, 29: 3241
29
Xu Y, Meng D W, Cheng Y Y, et al. Simultaneous improvement of the strength and plasticity for Ti-reinforced fine-grained magnesium matrix composites prepared by powder metallurgy [J]. Adv. Eng. Mater., 2024, 26: 2301349
30
Dinaharan I, Zhang S, Chen G Q, et al. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing [J]. Mater. Sci. Eng., 2020, A772: 138793
31
Radha R, Sreekanth D. Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications [J]. J. Magnes. Alloy., 2020, 8: 452
doi: 10.1016/j.jma.2019.05.010
32
Suslick K S, Price G J. Applications of ultrasound to materials chemistry [J]. Annu. Rev. Mater. Sci., 1999, 29: 295
33
Nie K B, Wang X J, Deng K K, et al. Magnesium matrix composite reinforced by nanoparticles—A review [J]. J. Magnes. Alloy., 2021, 9: 57
doi: 10.1016/j.jma.2020.08.018
34
Nie K B, Wang X J, Wu K, et al. Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration [J]. J. Alloys Compd., 2011, 509: 8664
35
Chen G, Song J F, Yang H, et al. The microstructures and mechanical properties of low-cost Ti particles reinforced AZ81 composites [J]. J. Mater. Res. Technol., 2024, 29: 3494
36
Lan J, Yang Y, Li X C. Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method [J]. Mater. Sci. Eng., 2004, A386: 284
37
Xiang S L, Wang X J, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties [J]. Sci. Rep., 2016, 6: 38824
doi: 10.1038/srep38824
pmid: 27941839
38
Wang X J, Wang N Z, Wang L Y, et al. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing [J]. Mater. Des., 2014, 57: 638
39
Chen L Y, Xu J Q, Choi H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles [J]. Nature, 2015, 528: 539
40
Nie K B, Guo Y C, Deng K K, et al. High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature [J]. J. Alloys Compd., 2019, 792: 267
41
Jayalakshmi S, Singh R A, Sankaranarayanan S, et al. Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique [J]. Mater Today: Proc., 2018, 5: 16280
42
Sekar P, Panigrahi S K. Understanding the corrosion and bio-corrosion behaviour of magnesium composites—A critical review [J]. J. Magnes. Alloy., 2024, 12: 890
43
Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets [J]. Composites, 2017, 100A: 183
44
Chen Y, Tekumalla S, Guo Y B, et al. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel [J]. Sci. Rep., 2016, 6: 32395
doi: 10.1038/srep32395
pmid: 27572903
45
Pahaul A, Johanes M, Gupta M. A first-time addition of selenium to a Mg-based metal matrix composite for biomedical purposes [J]. J. Compos. Sci., 2024, 8: 81
46
Zeng Z R, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1511
47
Majumdar T, Eisenstein N, Frith J E, et al. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint [J]. Adv. Eng. Mater., 2018, 20: 1800172
48
Wu C L, Zai W, Man H C. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: Parameter optimization, microstructure and biodegradability [J]. Mater. Today Commun., 2021, 26: 101922
49
Zhang X C, Shi H L, Wang X J, et al. Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing [J]. J. Alloys Compd., 2023, 938: 168567.
50
Oropeza D, Hart A J. Reactive binder jet additive manufacturing for microstructural control and dimensional stability of ceramic materials [J]. Addit. Manuf., 2021, 48: 102448
51
Guo Y Y, Quan G F, Jiang Y L, et al. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding [J]. J. Magnes. Alloy., 2021, 9: 192
52
Tang W N, Mo N, Hou J. Research progress of additively manufactured magnesium alloys: A review [J]. Acta Metall. Sin., 2023, 59: 205
doi: 10.11900/0412.1961.2022.00063
Zhang C H, Li Z, Zhang J K, et al. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives [J]. J. Magnes. Alloy., 2023, 11: 425
54
Peng L M, Deng Q C, Wu Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review [J]. Acta Metall. Sin., 2023, 59: 31
doi: 10.11900/0412.1961.2022.00166
Wu J J, Wang L Z. Selective laser melting manufactured CNTs/AZ31B composites: Heat transfer and vaporized porosity evolution [J]. J. Mater. Res., 2018, 33: 2752
56
Shuai C J, Wang B, Yang Y W, et al. 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties [J]. Composites, 2019, 162B: 611
57
Tao J X, Zhao M C, Zhao Y C, et al. Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting [J]. J. Magnes. Alloy., 2020, 8: 952
58
Salehi M, Kuah K X, Huang Z H, et al. Enhancing densification in binder jet additive manufacturing of magnesium via nanoparticles as sintering aids [J]. J. Manuf. Process., 2023, 99: 705
59
Dutta S, Gupta S, Roy M. Recent developments in magnesium metal-matrix composites for biomedical applications: A review [J]. ACS Biomater. Sci. Eng., 2020, 6: 4748
doi: 10.1021/acsbiomaterials.0c00678
pmid: 33455211
60
Shahin M, Munir K, Wen C E, et al. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives [J]. Acta Biomater., 2019, 96: 1
doi: S1742-7061(19)30417-9
pmid: 31181263
61
Nguyen Q B, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates [J]. Compos. Sci. Technol., 2008, 68: 2185
62
Seshadhri V, Sarala R, Alagarsamy S V, et al. Mechanical, biodegradability and biocompatibility behaviour of seashell and ZrO2 particulates reinforced AZ31 Mg composites [J]. Ceram. Int., 2024, 50: 15613
63
Verma V, Singh S, Pal K. Exploring the potential of Mg-Zn-Mn-Ca/ZnO composites as a biodegradable alternative for fracture fixation: Microstructural, mechanical, and in-vitro biocompatibility analysis [J]. Compos. Struct., 2023, 323: 117431
64
Liu H Y, Han T L, Li Q K, et al. Novel microstructures inducing an excellent combination of strength and elongation in in-situ MgO/AZ31 composites [J]. Compos. Struct., 2022, 294: 115770
65
Meenashisundaram G K, Wang N Y, Maskomani S, et al. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg [J]. Mater. Sci. Eng., 2020, C108: 110478
66
Chen L, Xia H G, Chen P, et al. Corrosion behavior of embedded perforated biodegradable Mg/Fe composite plate [J]. J. Mater. Eng. Perform., 2022, 31: 9740
67
Wong W L E, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering [J]. Compos. Sci. Technol., 2007, 67: 1541
68
Khanra A K, Jung H C, Hong K S, et al. Comparative property study on extruded Mg-HAP and ZM61-HAP composites [J]. Mater. Sci. Eng., 2010, A527: 6283
69
Cui Z Q, Zhang Y K, Cheng Y L, et al. Microstructure, mechanical, corrosion properties and cytotoxicity of beta-calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering [J]. Mater. Sci. Eng., 2019, C99: 1035
70
Fathi M H, Meratian M, Razavi M. Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior [J]. J. Biomed. Nanotechnol., 2011, 7: 441
pmid: 21830486
71
Abazari S, Shamsipur A, Bakhsheshi-Rad H R, et al. Functionalized carbon nanotube-encapsulated magnesium-based nanocomposites with outstanding mechanical and biological properties as load-bearing bone implants [J]. Mater. Des., 2022, 213: 110354
72
Rashad M, Pan F S, Tang A T, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium [J]. J. Alloys Compd., 2014, 603: 111
73
Del Campo R, Savoini B, Muñoz A, et al. Mechanical properties and corrosion behavior of Mg-HAP composites [J]. J. Mech. Behav. Biomed. Mater., 2014, 39: 238
doi: 10.1016/j.jmbbm.2014.07.014
pmid: 25146678
74
Saberi A, Baltatu M S, Vizureanu P. Recent advances in magnesium-magnesium oxide nanoparticle composites for biomedical applications [J]. Bioengineering, 2024, 11: 508
75
Tang C K, Lyu S Y, Zhao Z H, et al. Effects of MgO nano particles on the mechanical properties and corrosion behavior of Mg-Zn-Ca alloy [J]. Mater. Chem. Phys., 2023, 297: 127380
76
Yang W J, Tong Q Y, He C X, et al. Mechanically propelled ion exchange regulates metal/bioceramic interface characteristics to improve the corrosion resistance of Mg composite for orthopedic applications [J]. Ceram. Int., 2024, 50: 23124
77
Khalajabadi S Z, Kadir M R A, Izman S, et al. Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications [J]. Mater. Des., 2015, 88: 1223
78
Esen Z, Öcal E B, Akkaya A, et al. Corrosion behaviours of Ti6Al4V-Mg/Mg-alloy composites [J]. Corros. Sci., 2020, 166: 108470
79
Qin J Y, Li X Q, Jin P P, et al. Microstructure and mechanical properties of carbon nanotubes (CNTs) reinforced AZ91 matrix composite [J]. Acta Metall. Sin., 2019, 55: 1537
doi: 10.11900/0412.1961.2019.00173
Saberi A, Bakhsheshi-Rad H R, Karamian E, et al. Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties [J]. J. Alloy. Compd., 2020, 821: 153379
81
Jaiswal S, Kumar R M, Gupta P, et al. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories [J]. J. Mech. Behav. Biomed. Mater., 2018, 78: 442
doi: S1751-6161(17)30518-0
pmid: 29232643
82
Yang Y W, Lu C F, Shen L D, et al. In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing [J]. J. Magnes. Alloy., 2023, 11: 629
83
Cui Z Q, Li W J, Cheng L X, et al. Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering [J]. Mater. Charact., 2019, 151: 620
84
Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatite metal matrix composites [J]. Biomaterials, 2007, 28: 2163
pmid: 17276507
85
Cheng P F, Han P, Zhao C L, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF [J]. Biomaterials, 2016, 81: 14
doi: S0142-9612(15)00981-3
pmid: 26713681
86
Wang J L, Xu J K, Song B, et al. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits [J]. Acta Biomater., 2017, 63: 393
doi: S1742-7061(17)30582-2
pmid: 28919510
87
Han P, Cheng P F, Zhang S X, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model [J]. Biomaterials, 2015, 64: 57
88
Chaya A, Yoshizawa S, Verdelis K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing [J]. Acta Biomater., 2015, 18: 262
doi: 10.1016/j.actbio.2015.02.010
pmid: 25712384
89
Jähn K, Saito H, Taipaleenmäki H, et al. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice [J]. Acta Biomater., 2016, 36: 350
doi: 10.1016/j.actbio.2016.03.041
pmid: 27039975
90
Farraro K F, Sasaki N, Woo S L Y, et al. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint [J]. J. Orthop. Res., 2016, 34: 2001
doi: 10.1002/jor.23210
pmid: 26916011
91
Zhang Z Z, Zhou Y F, Li W P, et al. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: A proof-of-concept study [J]. Am. J. Sports Med., 2019, 47: 954
92
Zhang B X, Zhang W, Zhang F, et al. Degradable magnesium alloy suture promotes fibrocartilaginous interface regeneration in a rat rotator cuff transosseous repair model [J]. J. Magnes. Alloy., 2024, 12: 384
93
Chen Y D, Sun Y, Wu X H, et al. Rotator cuff repair with biodegradable high-purity magnesium suture anchor in sheep model [J]. J. Orthop. Translat., 2022, 35: 62
94
Hamushan M, Cai W J, Zhang Y B, et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling [J]. Bioact. Mater., 2021, 6: 1563
doi: 10.1016/j.bioactmat.2020.11.008
pmid: 33294734
95
Gonzalez J, Hou R Q, Nidadavolu E P S, et al. Magnesium degradation under physiological conditions—Best practice [J]. Bioact. Mater., 2018, 3: 174
doi: 10.1016/j.bioactmat.2018.01.003
pmid: 29744455
96
Wang J L, Xu J K, Hopkins C, et al. Biodegradable magnesium-based implants in orthopedics—A general review and perspectives [J]. Adv. Sci., 2020, 7: 1902443
97
Grünewald T A, Rennhofer H, Hesse B, et al. Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone [J]. Biomaterials, 2016, 76: 250
doi: 10.1016/j.biomaterials.2015.10.054
pmid: 26546917
98
Guo J D, Li L, Shi Y M, et al. Hydrogen water consumption prevents osteopenia in ovariectomized rats [J]. Br. J. Pharmacol., 2013, 168: 1412
99
Noviana D, Paramitha D, Ulum M F, et al. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats [J]. J. Orthop. Translat., 2016, 5: 9
100
Maradze D, Musson D, Zheng Y F, et al. High magnesium corrosion rate has an effect on osteoclast and mesenchymal stem cell role during bone remodelling [J]. Sci. Rep., 2018, 8: 10003
doi: 10.1038/s41598-018-28476-w
pmid: 29968794
101
Zhang Y F, Xu J K, Ruan Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats [J]. Nat. Med., 2016, 22: 1160
doi: 10.1038/nm.4162
pmid: 27571347
102
Yoshizawa S, Brown A, Barchowsky A, et al. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation [J]. Acta Biomater., 2014, 10: 2834
doi: 10.1016/j.actbio.2014.02.002
pmid: 24512978
103
Hung C C, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway [J]. Acta Biomater., 2019, 98: 246
104
Wang W Z, Wang L, Zhang B Q, et al. 3D printing of personalized magnesium composite bone tissue engineering scaffold for bone and angiogenesis regeneration [J]. Chem. Eng. J., 2024, 484: 149444
105
Zhai Z J, Qu X H, Li H W, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling [J]. Biomaterials, 2014, 35: 6299
doi: 10.1016/j.biomaterials.2014.04.044
pmid: 24816285
106
Qiao W, Wong K H M, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration [J]. Nat. Commun., 2021, 12: 2885
doi: 10.1038/s41467-021-23005-2
pmid: 34001887
107
Liang L X, Lin Z J, Duan Z Q, et al. Enhancing the immunomodulatory osteogenic properties of Ti-Mg alloy by Mg2+-containing nanostructures [J]. Regen. Biomater., 2024, 11: rbae104