|
|
Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels |
TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao( ), YANG Zhigang |
Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
|
Cite this article:
TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao, YANG Zhigang. Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels. Acta Metall Sin, 2025, 61(1): 77-87.
|
Abstract Incorporating metastable austenite is the one of the key strategies for achieving synergistic improvement in the strength and ductility of high-strength steels. Through in situ deformation-induced martensitic transformation during tensile loading, metastable austenite can delay necking while enhancing work-hardening capacity. Concurrently, ultrahigh-strength steel components are facing increasing demands in terms of lightweightness and service in complex environments; hence, they will be required to have a higher fracture toughness without compromising strength. Research has focused on incorporating the tougher austenite phase in high-strength steels to improve their fracture toughness and preserve ductility. Metastable austenite contributes to enhanced fracture toughness through transformation toughening and its interactions with cracks, which can deflect or blunt cracks. However, freshly formed martensite, a product of martensitic transformation, can reduce the toughening effect or even deteriorate fracture toughness due to its inherent brittleness and effect on the local stress state. This paper reviews recent research progress on the relationship between metastable austenite and fracture toughness of high-strength steels, examining the toughening and embrittlement mechanisms of the phase. In addition, it outlines future design principles for metastable austenite incorporation in high-strength steels to achieve synergistic improvements in strength and toughness.
|
Received: 07 May 2024
|
|
Fund: National Key Research and Development Program of China(2022YFE0110800);National Natural Science Foundation of China(52201011);National Natural Science Foundation of China(51922054) |
Corresponding Authors:
CHEN Hao, professor, Tel: (010)62781646, E-mail: hao.chen@mail.tsinghua.edu.cn
|
1 |
Garrison W M. Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, 42(5): 20
|
2 |
Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear[J]. J. Aeronaut. Mater., 2017, 37(6): 1
|
|
赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望[J]. 航空材料学报, 2017, 37(6): 1
|
3 |
Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metall. Sin., 2020, 56: 494
doi: 10.11900/0412.1961.2019.00328
|
|
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56: 494
doi: 10.11900/0412.1961.2019.00328
|
4 |
Gupta M K, Singhal V. Review on materials for making lightweight vehicles[J]. Mater. Today Proc., 2022, 56: 868
|
5 |
Yi H L, Sun L, Xiong X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Mater. Sci. Technol., 2018, 34: 1112
|
6 |
Li J H, Zhan D P, Jiang Z H, et al. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review[J]. J. Mater. Res. Technol., 2023, 23: 172
|
7 |
Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metall. Sin., 2010, 46: 687
|
|
王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
|
8 |
Ritchie R O. Toughening materials: Enhancing resistance to fracture[J]. Philos. Trans. Roy. Soc., 2021, 379A: 20200437
|
9 |
Lu K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940
pmid: 25237091
|
10 |
Yao Y J, Fan L Y, Ding R, et al. On the role of cellular microstructure in austenite reversion in selective laser melted maraging steel[J]. J. Mater. Sci. Technol., 2024, 184: 180
doi: 10.1016/j.jmst.2023.10.032
|
11 |
Wang B, Niu M C, Wang W, et al. Microstructure and strength-toughness of a Cu-contained maraging stainless steel[J]. Acta Metall. Sin., 2023, 59: 636
doi: 10.11900/0412.1961.2021.00599
|
|
王 滨, 牛梦超, 王 威 等. 含Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59: 636
|
12 |
Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel[J]. Phys. Procedia, 2011, 12: 255
|
13 |
Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 oC[J]. J. Alloys Compd., 2016, 679: 184
|
14 |
Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Mater. Charact., 2018, 144: 393
|
15 |
Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength Aermet 100 steel[J]. Metall. Mater. Trans., 2002, 33A: 1991
|
16 |
Jatczak C F. Retained austenite and its measurement by X-ray diffraction[EB/OL]. Section 2, Trans.SAE, InternationalSAE, 1980: 1657
|
17 |
Wang H L, Zhang J, Huang J T, et al. The evolution of a microstructure during tempering and its influence on the mechanical properties of AerMet 100 steel[J]. Materials, 2023, 16: 6907
|
18 |
Vander Voort G F. Metallographic techniques for tool steels[A]. Vol.9, ASM Handbook[M]. Material Park, OH: ASM International, 2004, 644
|
19 |
Habiby F, ul Haq A, Khan A Q. Influence of austenite on the coercive force, electrical resistivity and hardness of 18% Ni maraging steels[J]. Mater. Des., 1992, 13: 259
|
20 |
Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metall. Trans., 1993, 24A: 1943
|
21 |
Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Mater. Sci. Eng., 2020, A772: 138633
|
22 |
Sun D B, Wang H, An X G, et al. Quantitative evaluation of the contribution of carbide-free bainite, lath martensite, and retained austenite on the mechanical properties of C-Mn-Si high-strength steels[J]. Mater. Charact., 2023, 199: 112802
|
23 |
Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metall. Mater. Trans., 2001, 32A: 1527
|
24 |
Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metall. Trans., 1975, 6A: 791
|
25 |
Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation[J]. Metall. Trans., 1976, 7A: 1897
|
26 |
Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review[J]. Mater. Sci. Eng., 2020, A795: 140023
|
27 |
Bleck W, Guo X F, Ma Y. The TRIP effect and its application in cold formable sheet steels[J]. Steel Res. Int., 2017, 88: 1700218
|
28 |
Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility in high-strength steels[J]. Trans. Am. Soc. Met., 1967, 60: 252
|
29 |
Gerberich W W, Hemmings P L, Zackay V F. Fracture and fractography of metastable austenites[J]. Metall. Trans., 1971, 2: 2243
|
30 |
Tan X D, Ponge D, Lu W J, et al. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels[J]. Acta Mater., 2020, 186: 374
|
31 |
Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
|
|
胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
|
32 |
Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Res. Int., 2013, 84: 937
|
33 |
Caballero F G, García-Mateo C, Chao J, et al. Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels[J]. ISIJ Int., 2008, 48: 1256
|
34 |
Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Mater., 2003, 51: 5775
|
35 |
Chen X S, Huang X M, Liu J J, et al. Microstructure regulation and strengthening mechanisms of a hot-rolled & intercritical annealed medium-Mn steel containing Mn-segregation band[J]. Acta Metall. Sin., 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
|
|
陈学双, 黄兴民, 刘俊杰 等. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
|
36 |
Launey M E, Ritchie R O. On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
|
37 |
Ritchie R O, Zheng X R. Growing designability in structural materials[J]. Nat. Mater., 2022, 21: 968
doi: 10.1038/s41563-022-01336-9
pmid: 36002721
|
38 |
Bordone M, Monsalve A, Perez Ipiña J. Fracture toughness of high-manganese steels with TWIP/TRIP effects[J]. Eng. Fract. Mech., 2022, 275: 108837
|
39 |
Hu C, Pan S, Huang M X. Strong and tough heterogeneous TWIP steel fabricated by warm rolling[J]. Acta Metall. Sin., 2022, 58: 1519
doi: 10.11900/0412.1961.2022.00354
|
|
胡 晨, 潘 帅, 黄明欣. 高强高韧异质结构温轧TWIP钢[J]. 金属学报, 2022, 58: 1519
|
40 |
Lage M A, Assis K S, Mattos O R. Hydrogen influence on fracture toughness of the weld metal in super duplex stainless steel (UNS S32750) welded with two different heat input[J]. Int. J. Hydrogen Energy, 2015, 40: 17000
|
41 |
Sieurin H, Westin E M, Liljas M, et al. Fracture toughness of welded commercial lean duplex stainless steels[J]. Weld. World, 2009, 53: R24
|
42 |
Martis C J, Putatunda S K, Boileau J. Processing of a new high strength high toughness steel with duplex microstructure (ferrite + austenite)[J]. Mater. Des., 2013, 46: 168
|
43 |
Kobayashi J, Ina D, Futamura A, et al. Fracture toughness of an advanced ultrahigh-strength TRIP-aided steel[J]. ISIJ Int., 2014, 54: 955
|
44 |
Niu G, Zurob H S, Misra R D K, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure[J]. Acta Mater., 2022, 226: 117642
|
45 |
Ran X Z, Zhang S Q, Liu D, et al. Role of microstructural characteristics in combination of strength and fracture toughness of laser additively manufactured ultrahigh-strength AerMet100 steel[J]. Metall. Mater. Trans., 2021, 52A: 1248
|
46 |
Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metall. Trans., 1989, 20A: 105
|
47 |
Delagnes D, Pettinari-Sturmel F, Mathon M H, et al. Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering[J]. Acta Mater., 2012, 60: 5877
|
48 |
Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance[J]. Mater. Charact., 2018, 140: 103
|
49 |
Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. J. Alloys Compd., 2022, 928: 167135
|
50 |
He Y, Yang K, Qu W S, et al. Strengthening and toughening of a 2800-MPa grade maraging steel[J]. Mater. Lett., 2002, 56: 763
|
51 |
de Lima Filho V X, Lima T N, Griza S, et al. The increase of fracture toughness with solution annealing temperature in 18Ni maraging 300 steel[J]. Mater. Res., 2021, 24: e20200472
|
52 |
He Y, Yang K, Liu K, et al. Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel[J]. Metall. Mater. Trans., 2006, 37A: 1107
|
53 |
Kumar G, Ghosh S, Pallaspuro S, et al. Fracture toughness characteristics of thermo-mechanically rolled direct quenched and partitioned steels[J]. Mater. Sci. Eng., 2022, A840: 142788
|
54 |
Miihkinen V T T, Edmonds D V. Influence of retained austenite on the fracture toughness of high strength steels[A]. Fracture 84[M]. Amsterdam: Elsevier, 1984: 1481
|
55 |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
56 |
Hu C, Huang C P, Liu Y X, et al. The dual role of TRIP effect on ductility and toughness of a medium Mn steel[J]. Acta Mater., 2023, 245: 118629
|
57 |
Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
|
58 |
Rohit B, Muktinutalapati N R. Austenite reversion in 18% Ni maraging steel and its weldments[J]. Mater. Sci. Technol., 2018, 34: 253
|
59 |
Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containing ceramics[J]. J. Am. Ceram. Soc., 2000, 83: 461
|
60 |
Reyes-Morel P E, Chen I W. Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: I, Stress assistance and autocatalysis[J]. J. Am. Ceram. Soc., 1988, 71: 343
|
61 |
Aoki M, Chiang Y M, Kosacki I, et al. Solute segregation and grain-boundary impedance in high-purity stabilized zirconia[J]. J. Am. Ceram. Soc., 1996, 79: 1169
|
62 |
Sun Q P, Zhao Z J, Chen W Z, et al. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics[J]. J. Am. Ceram. Soc., 1994, 77: 1352
|
63 |
Yoshida K, Wakai F, Nishiyama N, et al. Large increase in fracture resistance of stishovite with crack extension less than one micrometer[J]. Sci. Rep., 2015, 5: 10993
doi: 10.1038/srep10993
pmid: 26051871
|
64 |
Antolovich S D, Singh B. On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels[J]. Metall. Trans., 1971, 2B: 2135
|
65 |
Antolovich S D, Saxena A, Chanani G R. Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling[J]. Metall. Trans., 1974, 5: 623
|
66 |
McMeeking R M, Evans A G. Mechanics of transformation‐toughening in brittle materials[J]. J. Am. Ceram. Soc., 1982, 65: 242
|
67 |
Irwin G R. Fracturing and fracture mechanics[R]. Champagne: University of Illinois at Urbana-Champaign, 1961: 202
|
68 |
Irwin G R. Plastic zone near a crack and fracture toughness[A]. Proceedings of the 7th Sagamore Ordnance Materials Conference[C]. New York: Syracuse University Press, 1960: 463
|
69 |
Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proc. Roy. Soc., 1957, 241A: 376
|
70 |
Bueckner H F. Novel principle for the computation of stress intensity factors[J]. Z. Angew. Math. Mech., 1970, 50: 529
|
71 |
Rice J R. Some remarks on elastic crack-tip stress fields[J]. Int. J. Solids Struct., 1972, 8: 751
|
72 |
Furuhara T. Matrix structure of martensite and bainite in steels[J]. Heat Treat., 2009, 24(2): 16
|
|
古原忠. 钢中马氏体和贝氏体基体组织的特征[J]. 热处理, 2009, 24(2): 16
|
73 |
Wang C D, Qiu H, Kimura Y, et al. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel[J]. Mater. Sci. Eng., 2016, A669: 48
|
74 |
Hockauf K, Wagner M F X, Mašek B, et al. Mechanisms of fatigue crack propagation in a Q&P-processed steel[J]. Mater. Sci. Eng., 2019, A754: 18
|
75 |
Faber K T, Evans A G. Crack deflection processes-I. Theory[J]. Acta Metall., 1983, 31: 565
|
76 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals[J]. Philos. Mag., 1974, 29A: 73
|
77 |
Wu R M, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels[J]. Metall. Mater. Trans., 2014, 45A: 1892
|
78 |
Zhou S B, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel[J]. J. Mater. Res. Technol., 2021, 14: 1021
doi: 10.1016/j.jmrt.2021.07.011
|
79 |
Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate[J]. Mater. Sci. Eng., 2016, A675: 153
|
80 |
Zhou Y T, Hojo T, Koyama M, et al. Effect of austempering treatment on the microstructure and mechanical properties of 0.4C-1.5Si-1.5Mn TRIP-aided bainitic ferrite steel[J]. Mater. Sci. Eng., 2021, A819: 141479
|
81 |
Landes J D, McCabe D E, Boulet J A M. Fracture Mechanics: Twenty-Fourth Volume[M]. Philadelphia: ASTM International, 1994: 48
|
82 |
Pardoen T, Marchal Y, Delannay F. Thickness dependence of cracking resistance in thin aluminium plates[J]. J. Mech. Phys. Solids, 1999, 47: 2093
|
83 |
Pardoen T, Delannay F. A method for the metallographical measurement of the CTOD at cracking initiation and the role of reverse plasticity on unloading[J]. Eng. Fract. Mech., 2000, 65: 455
|
84 |
Gao G H, Liu R, Wang K, et al. Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels[J]. Scr. Mater., 2020, 184: 12
|
85 |
Zhang S H, Lv D Z, Xiong J. The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: A CPFEM study[J]. J. Mater. Res. Technol., 2022, 18: 2963
|
86 |
Li Y J, Kang J, Zhang W N, et al. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels[J]. Mater. Sci. Eng., 2018, A710: 181
|
87 |
Wang Z, Huang M X. Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite[J]. Int. J. Plast., 2020, 134: 102851
|
88 |
Handerhan K J, Garrison W M. A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels[J]. Acta Metall. Mater., 1992, 40: 1337
|
89 |
Narayan R L, Raut D, Ramamurty U. A quantitative connection between shear band mediated plasticity and fracture initiation toughness of metallic glasses[J]. Acta Mater., 2018, 150: 69
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|