Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (1): 77-87    DOI: 10.11900/0412.1961.2024.00142
Overview Current Issue | Archive | Adv Search |
Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels
TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao(), YANG Zhigang
Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

TANG Jingtao, YAO Yingjie, ZHANG Youyou, WU Wenhua, LI Yubo, CHEN Hao, YANG Zhigang. Research Progress on the Influence of Metastable Austenite on the Fracture Toughness of High-Strength Steels. Acta Metall Sin, 2025, 61(1): 77-87.

Download:  HTML  PDF(1646KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Incorporating metastable austenite is the one of the key strategies for achieving synergistic improvement in the strength and ductility of high-strength steels. Through in situ deformation-induced martensitic transformation during tensile loading, metastable austenite can delay necking while enhancing work-hardening capacity. Concurrently, ultrahigh-strength steel components are facing increasing demands in terms of lightweightness and service in complex environments; hence, they will be required to have a higher fracture toughness without compromising strength. Research has focused on incorporating the tougher austenite phase in high-strength steels to improve their fracture toughness and preserve ductility. Metastable austenite contributes to enhanced fracture toughness through transformation toughening and its interactions with cracks, which can deflect or blunt cracks. However, freshly formed martensite, a product of martensitic transformation, can reduce the toughening effect or even deteriorate fracture toughness due to its inherent brittleness and effect on the local stress state. This paper reviews recent research progress on the relationship between metastable austenite and fracture toughness of high-strength steels, examining the toughening and embrittlement mechanisms of the phase. In addition, it outlines future design principles for metastable austenite incorporation in high-strength steels to achieve synergistic improvements in strength and toughness.

Key words:  metastable austenite      fracture toughness      phase transformation     
Received:  07 May 2024     
ZTFLH:  TG142  
Fund: National Key Research and Development Program of China(2022YFE0110800);National Natural Science Foundation of China(52201011);National Natural Science Foundation of China(51922054)
Corresponding Authors:  CHEN Hao, professor, Tel: (010)62781646, E-mail: hao.chen@mail.tsinghua.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00142     OR     https://www.ams.org.cn/EN/Y2025/V61/I1/77

Fig.1  Ashby plot showing the strength-ductility trade-off of some high-strength steels (For example: twinning-induced plasticity(TWIP) steel[38,39], duplex steel[40-42], transformation-induced plasticity(TRIP)-aided steel[43,44], secondary hardening steel[45-49], and Maraging steel[50-52])
Fig.2  Transformation zone schematics of energy adsorption theory (a) and crack tip shielding theory (b), crack propagation resistance curve predicted by transformation toughening theory (c), and the dependence of toughening behavior on the critical transformation stress (d) (h—semi-major axis of the elliptical transformation zone, βh—semi-minor axis of the elliptical transformation zone, r—distance between the edge of transformation zone and the crack tip, θ—angle between the line which originates from the crack tip connecting the transformation-zone edge, and the crack plane, ΔKI—increment of the stress intensity factor resulted by phase transformation, ΔKIC—critical value of ΔKI, Δa—crack length, KIC—type I stress intensity factor, σM—critical stress for martensitic transformation)
Fig.3  Contour maps of strain triaxiality distributions exposed to different TRIP treatments and with varying carbon concentrations[57] (ε33ctthrough-thickness strain, I'—axis: horizontal distance from the crack tip, h'—vertical distance from the crack tip)
Fig.4  Cracking as a consequence of the fresh martensite produced by retained austenite phase transformation
(a) martensite cleavage[57]
(b) martensite-martensite interfacial cracking[57] (c, d) martensite-matrix interfacial cracking[56,57] (Where orange arrows in Fig.4d point to martensite-matrix interface decohesion while green arrows show martensite cracking)
Fig.5  Changes of energy release rate (GICγ) due to phase transformation, corresponding evaluated GICγ from energy adsorption theory, and the carbon concentration in retained austenite varying with quenching & partitioning process[77] (The sample axis represents the quenching & partitioning parameters, e.g. QP260(60) indicates partitioning at 260 oC for 60 min)
1 Garrison W M. Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, 42(5): 20
2 Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear[J]. J. Aeronaut. Mater., 2017, 37(6): 1
赵 博, 许广兴, 贺 飞 等. 飞机起落架用超高强度钢应用现状及展望[J]. 航空材料学报, 2017, 37(6): 1
3 Luo H W, Shen G H. Progress and perspective of ultra-high strength steels having high toughness[J]. Acta Metall. Sin., 2020, 56: 494
doi: 10.11900/0412.1961.2019.00328
罗海文, 沈国慧. 超高强高韧化钢的研究进展和展望[J]. 金属学报, 2020, 56: 494
doi: 10.11900/0412.1961.2019.00328
4 Gupta M K, Singhal V. Review on materials for making lightweight vehicles[J]. Mater. Today Proc., 2022, 56: 868
5 Yi H L, Sun L, Xiong X C. Challenges in the formability of the next generation of automotive steel sheets[J]. Mater. Sci. Technol., 2018, 34: 1112
6 Li J H, Zhan D P, Jiang Z H, et al. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review[J]. J. Mater. Res. Technol., 2023, 23: 172
7 Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metall. Sin., 2010, 46: 687
王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
8 Ritchie R O. Toughening materials: Enhancing resistance to fracture[J]. Philos. Trans. Roy. Soc., 2021, 379A: 20200437
9 Lu K. Making strong nanomaterials ductile with gradients[J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
10 Yao Y J, Fan L Y, Ding R, et al. On the role of cellular microstructure in austenite reversion in selective laser melted maraging steel[J]. J. Mater. Sci. Technol., 2024, 184: 180
doi: 10.1016/j.jmst.2023.10.032
11 Wang B, Niu M C, Wang W, et al. Microstructure and strength-toughness of a Cu-contained maraging stainless steel[J]. Acta Metall. Sin., 2023, 59: 636
doi: 10.11900/0412.1961.2021.00599
王 滨, 牛梦超, 王 威 等. 含Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59: 636
12 Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel[J]. Phys. Procedia, 2011, 12: 255
13 Shi X H, Zeng W D, Zhao Q Y, et al. Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 oC[J]. J. Alloys Compd., 2016, 679: 184
14 Zhang Y P, Zhan D P, Qi X W, et al. Austenite and precipitation in secondary-hardening ultra-high-strength stainless steel[J]. Mater. Charact., 2018, 144: 393
15 Thomas R L S, Li D M, Gangloff R P, et al. Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength Aermet 100 steel[J]. Metall. Mater. Trans., 2002, 33A: 1991
16 Jatczak C F. Retained austenite and its measurement by X-ray diffraction[EB/OL]. Section 2, Trans.SAE, InternationalSAE, 1980: 1657
17 Wang H L, Zhang J, Huang J T, et al. The evolution of a microstructure during tempering and its influence on the mechanical properties of AerMet 100 steel[J]. Materials, 2023, 16: 6907
18 Vander Voort G F. Metallographic techniques for tool steels[A]. Vol.9, ASM Handbook[M]. Material Park, OH: ASM International, 2004, 644
19 Habiby F, ul Haq A, Khan A Q. Influence of austenite on the coercive force, electrical resistivity and hardness of 18% Ni maraging steels[J]. Mater. Des., 1992, 13: 259
20 Ayer R, Machmeier P M. Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metall. Trans., 1993, 24A: 1943
21 Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties[J]. Mater. Sci. Eng., 2020, A772: 138633
22 Sun D B, Wang H, An X G, et al. Quantitative evaluation of the contribution of carbide-free bainite, lath martensite, and retained austenite on the mechanical properties of C-Mn-Si high-strength steels[J]. Mater. Charact., 2023, 199: 112802
23 Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metall. Mater. Trans., 2001, 32A: 1527
24 Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metall. Trans., 1975, 6A: 791
25 Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation[J]. Metall. Trans., 1976, 7A: 1897
26 Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review[J]. Mater. Sci. Eng., 2020, A795: 140023
27 Bleck W, Guo X F, Ma Y. The TRIP effect and its application in cold formable sheet steels[J]. Steel Res. Int., 2017, 88: 1700218
28 Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility in high-strength steels[J]. Trans. Am. Soc. Met., 1967, 60: 252
29 Gerberich W W, Hemmings P L, Zackay V F. Fracture and fractography of metastable austenites[J]. Metall. Trans., 1971, 2: 2243
30 Tan X D, Ponge D, Lu W J, et al. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels[J]. Acta Mater., 2020, 186: 374
31 Hu B J, Zheng Q Y, Lu Y, et al. Recrystallization controlling in a cold-rolled medium Mn steel and its effect on mechanical properties[J]. Acta Metall. Sin., 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
胡宝佳, 郑沁园, 路 轶 等. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60: 189
doi: 10.11900/0412.1961.2022.00350
32 Bouaziz O, Zurob H, Huang M X. Driving force and logic of development of advanced high strength steels for automotive applications[J]. Steel Res. Int., 2013, 84: 937
33 Caballero F G, García-Mateo C, Chao J, et al. Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels[J]. ISIJ Int., 2008, 48: 1256
34 Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Mater., 2003, 51: 5775
35 Chen X S, Huang X M, Liu J J, et al. Microstructure regulation and strengthening mechanisms of a hot-rolled & intercritical annealed medium-Mn steel containing Mn-segregation band[J]. Acta Metall. Sin., 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
陈学双, 黄兴民, 刘俊杰 等. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59: 1448
doi: 10.11900/0412.1961.2021.00431
36 Launey M E, Ritchie R O. On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
37 Ritchie R O, Zheng X R. Growing designability in structural materials[J]. Nat. Mater., 2022, 21: 968
doi: 10.1038/s41563-022-01336-9 pmid: 36002721
38 Bordone M, Monsalve A, Perez Ipiña J. Fracture toughness of high-manganese steels with TWIP/TRIP effects[J]. Eng. Fract. Mech., 2022, 275: 108837
39 Hu C, Pan S, Huang M X. Strong and tough heterogeneous TWIP steel fabricated by warm rolling[J]. Acta Metall. Sin., 2022, 58: 1519
doi: 10.11900/0412.1961.2022.00354
胡 晨, 潘 帅, 黄明欣. 高强高韧异质结构温轧TWIP钢[J]. 金属学报, 2022, 58: 1519
40 Lage M A, Assis K S, Mattos O R. Hydrogen influence on fracture toughness of the weld metal in super duplex stainless steel (UNS S32750) welded with two different heat input[J]. Int. J. Hydrogen Energy, 2015, 40: 17000
41 Sieurin H, Westin E M, Liljas M, et al. Fracture toughness of welded commercial lean duplex stainless steels[J]. Weld. World, 2009, 53: R24
42 Martis C J, Putatunda S K, Boileau J. Processing of a new high strength high toughness steel with duplex microstructure (ferrite + austenite)[J]. Mater. Des., 2013, 46: 168
43 Kobayashi J, Ina D, Futamura A, et al. Fracture toughness of an advanced ultrahigh-strength TRIP-aided steel[J]. ISIJ Int., 2014, 54: 955
44 Niu G, Zurob H S, Misra R D K, et al. Superior fracture toughness in a high-strength austenitic steel with heterogeneous lamellar microstructure[J]. Acta Mater., 2022, 226: 117642
45 Ran X Z, Zhang S Q, Liu D, et al. Role of microstructural characteristics in combination of strength and fracture toughness of laser additively manufactured ultrahigh-strength AerMet100 steel[J]. Metall. Mater. Trans., 2021, 52A: 1248
46 Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metall. Trans., 1989, 20A: 105
47 Delagnes D, Pettinari-Sturmel F, Mathon M H, et al. Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering[J]. Acta Mater., 2012, 60: 5877
48 Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in Ferrium® M54® steel to achieve optimum ultimate tensile strength/fracture toughness balance[J]. Mater. Charact., 2018, 140: 103
49 Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment[J]. J. Alloys Compd., 2022, 928: 167135
50 He Y, Yang K, Qu W S, et al. Strengthening and toughening of a 2800-MPa grade maraging steel[J]. Mater. Lett., 2002, 56: 763
51 de Lima Filho V X, Lima T N, Griza S, et al. The increase of fracture toughness with solution annealing temperature in 18Ni maraging 300 steel[J]. Mater. Res., 2021, 24: e20200472
52 He Y, Yang K, Liu K, et al. Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel[J]. Metall. Mater. Trans., 2006, 37A: 1107
53 Kumar G, Ghosh S, Pallaspuro S, et al. Fracture toughness characteristics of thermo-mechanically rolled direct quenched and partitioned steels[J]. Mater. Sci. Eng., 2022, A840: 142788
54 Miihkinen V T T, Edmonds D V. Influence of retained austenite on the fracture toughness of high strength steels[A]. Fracture 84[M]. Amsterdam: Elsevier, 1984: 1481
55 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination[J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
56 Hu C, Huang C P, Liu Y X, et al. The dual role of TRIP effect on ductility and toughness of a medium Mn steel[J]. Acta Mater., 2023, 245: 118629
57 Lacroix G, Pardoen T, Jacques P J. The fracture toughness of TRIP-assisted multiphase steels[J]. Acta Mater., 2008, 56: 3900
58 Rohit B, Muktinutalapati N R. Austenite reversion in 18% Ni maraging steel and its weldments[J]. Mater. Sci. Technol., 2018, 34: 253
59 Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containing ceramics[J]. J. Am. Ceram. Soc., 2000, 83: 461
60 Reyes-Morel P E, Chen I W. Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals: I, Stress assistance and autocatalysis[J]. J. Am. Ceram. Soc., 1988, 71: 343
61 Aoki M, Chiang Y M, Kosacki I, et al. Solute segregation and grain-boundary impedance in high-purity stabilized zirconia[J]. J. Am. Ceram. Soc., 1996, 79: 1169
62 Sun Q P, Zhao Z J, Chen W Z, et al. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics[J]. J. Am. Ceram. Soc., 1994, 77: 1352
63 Yoshida K, Wakai F, Nishiyama N, et al. Large increase in fracture resistance of stishovite with crack extension less than one micrometer[J]. Sci. Rep., 2015, 5: 10993
doi: 10.1038/srep10993 pmid: 26051871
64 Antolovich S D, Singh B. On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels[J]. Metall. Trans., 1971, 2B: 2135
65 Antolovich S D, Saxena A, Chanani G R. Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling[J]. Metall. Trans., 1974, 5: 623
66 McMeeking R M, Evans A G. Mechanics of transformation‐toughening in brittle materials[J]. J. Am. Ceram. Soc., 1982, 65: 242
67 Irwin G R. Fracturing and fracture mechanics[R]. Champagne: University of Illinois at Urbana-Champaign, 1961: 202
68 Irwin G R. Plastic zone near a crack and fracture toughness[A]. Proceedings of the 7th Sagamore Ordnance Materials Conference[C]. New York: Syracuse University Press, 1960: 463
69 Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proc. Roy. Soc., 1957, 241A: 376
70 Bueckner H F. Novel principle for the computation of stress intensity factors[J]. Z. Angew. Math. Mech., 1970, 50: 529
71 Rice J R. Some remarks on elastic crack-tip stress fields[J]. Int. J. Solids Struct., 1972, 8: 751
72 Furuhara T. Matrix structure of martensite and bainite in steels[J]. Heat Treat., 2009, 24(2): 16
古原忠. 钢中马氏体和贝氏体基体组织的特征[J]. 热处理, 2009, 24(2): 16
73 Wang C D, Qiu H, Kimura Y, et al. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel[J]. Mater. Sci. Eng., 2016, A669: 48
74 Hockauf K, Wagner M F X, Mašek B, et al. Mechanisms of fatigue crack propagation in a Q&P-processed steel[J]. Mater. Sci. Eng., 2019, A754: 18
75 Faber K T, Evans A G. Crack deflection processes-I. Theory[J]. Acta Metall., 1983, 31: 565
76 Rice J R, Thomson R. Ductile versus brittle behaviour of crystals[J]. Philos. Mag., 1974, 29A: 73
77 Wu R M, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels[J]. Metall. Mater. Trans., 2014, 45A: 1892
78 Zhou S B, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel[J]. J. Mater. Res. Technol., 2021, 14: 1021
doi: 10.1016/j.jmrt.2021.07.011
79 Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate[J]. Mater. Sci. Eng., 2016, A675: 153
80 Zhou Y T, Hojo T, Koyama M, et al. Effect of austempering treatment on the microstructure and mechanical properties of 0.4C-1.5Si-1.5Mn TRIP-aided bainitic ferrite steel[J]. Mater. Sci. Eng., 2021, A819: 141479
81 Landes J D, McCabe D E, Boulet J A M. Fracture Mechanics: Twenty-Fourth Volume[M]. Philadelphia: ASTM International, 1994: 48
82 Pardoen T, Marchal Y, Delannay F. Thickness dependence of cracking resistance in thin aluminium plates[J]. J. Mech. Phys. Solids, 1999, 47: 2093
83 Pardoen T, Delannay F. A method for the metallographical measurement of the CTOD at cracking initiation and the role of reverse plasticity on unloading[J]. Eng. Fract. Mech., 2000, 65: 455
84 Gao G H, Liu R, Wang K, et al. Role of retained austenite with different morphologies on sub-surface fatigue crack initiation in advanced bainitic steels[J]. Scr. Mater., 2020, 184: 12
85 Zhang S H, Lv D Z, Xiong J. The effect of reversed austenite on mechanical properties of 13Cr4NiMo steel: A CPFEM study[J]. J. Mater. Res. Technol., 2022, 18: 2963
86 Li Y J, Kang J, Zhang W N, et al. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels[J]. Mater. Sci. Eng., 2018, A710: 181
87 Wang Z, Huang M X. Optimising the strength-ductility-toughness combination in ultra-high strength quenching and partitioning steels by tailoring martensite matrix and retained austenite[J]. Int. J. Plast., 2020, 134: 102851
88 Handerhan K J, Garrison W M. A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels[J]. Acta Metall. Mater., 1992, 40: 1337
89 Narayan R L, Raut D, Ramamurty U. A quantitative connection between shear band mediated plasticity and fracture initiation toughness of metallic glasses[J]. Acta Mater., 2018, 150: 69
[1] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[2] WANG Yanxu, GONG Wu, SU Yuhua, LI Bing. Application of Neutron Characterization Techniques to Metallic Structural Materials[J]. 金属学报, 2024, 60(8): 1001-1016.
[3] SHEN Yang, GU Zhengman, WANG Cong. Phase Transformation Behaviors in the Heat-Affected Zones of Ferritic Heat-Resistant Steels Enabled by In Situ CSLM Observation[J]. 金属学报, 2024, 60(6): 802-816.
[4] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[5] YANG Ping, MA Dandan, GU Chen, GU Xinfu. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel[J]. 金属学报, 2024, 60(3): 377-387.
[6] LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong. Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations[J]. 金属学报, 2024, 60(10): 1388-1404.
[7] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[12] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[13] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[14] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[15] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
No Suggested Reading articles found!