|
|
Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys |
YU Dong1, MA Weilong2, WANG Yali1, WANG Jincheng1( ) |
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 College of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
|
Cite this article:
YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys. Acta Metall Sin, 2025, 61(1): 109-116.
|
Abstract The evolution of the microstructure during solidification and solid-state phase transformation is crucial for controlling the material microstructure and optimizing performance. Achieving an integrated numerical simulation of the microstructural evolution from solidification to solid-state phase transformation is a cutting-edge challenge in material-microstructure simulation. This study focuses on Au-Pt alloys, utilizing a multiphase field model combined with a microstructural information transfer algorithm to simulate and predict microstructural evolution during the solidification and solid-state phase transformation under different initial composition conditions. The study successfully realizes an integrated simulation prediction of the microstructural evolution across both processes, revealing the influence of microsegregation and grain boundaries during solidification on subsequent processes of decomposition and spinodal decomposition.
|
Received: 14 August 2024
|
|
Fund: National Key Research and Development Program of China(2021YFC2202301) |
Corresponding Authors:
WANG Jincheng, professor, Tel: (029)88460650, E-mail: jchwang@nwpu.edu.cn
|
1 |
Kurz W, Fisher D J, Trivedi R. Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J]. Int. Mater. Rev., 2019, 64: 311
|
2 |
Kurz W, Rappaz M, Trivedi R. Progress in modelling solidification microstructures in metals and alloys. Part II: Dendrites from 2001 to 2018[J]. Int. Mater. Rev., 2021, 66: 30
|
3 |
Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials[J]. Chin. J. Nonferrous Met., 2019, 29: 1953
|
|
翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望[J]. 中国有色金属学报, 2019, 29: 1953
|
4 |
Liu F, Zhang X, Zhang Y B. Unified analysis of non-equilibrium solidification and solid-state phase transformations[J]. Acta Metall. Sin., 2018, 54: 701
doi: 10.11900/0412.1961.2018.00112
|
|
刘 峰, 张 旭, 张玉兵. 非平衡凝固与固态相变的一体化研究[J]. 金属学报, 2018, 54: 701
|
5 |
Ghosh S, Zollinger J, Zaloznik M, et al. Modeling of hierarchical solidification microstructures in metal additive manufacturing: challenges and opportunities[J]. Addit. Manuf., 2023, 78: 103845
|
6 |
Wang T M, Wei J J, Wang X D, et al. Progress and application of microstructure simulation of alloy solidification[J]. Acta Metall. Sin., 2018, 54: 193
doi: 10.11900/0412.1961.2017.00428
|
|
王同敏, 魏晶晶, 王旭东 等. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54: 193
doi: 10.11900/0412.1961.2017.00428
|
7 |
Wang J C, Guo C W, Li J J, et al. Recent progresses in competitive grain growth during directional solidification[J]. Acta Metall. Sin., 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
|
|
王锦程, 郭春文, 李俊杰 等. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
|
8 |
Liu B C, Xu Q Y, Jing T, et al. Advances in multi-scale modeling of solidification and casting processes[J]. JOM, 2011, 63(4): 19
|
9 |
Warnken N, Larsson H, Reed R C. Coupled modelling of solidification and solution heat treatment of advanced single crystal nickel base superalloy[J]. Mater. Sci. Technol., 2009, 25: 179
|
10 |
Meng X N, Gao X H, Huang S, et al. Cross-scale modeling of MnS precipitation for steel solidification[J]. Metals, 2018, 8: 529
|
11 |
Shi R P, Khairallah S, Heo T W, et al. Integrated simulation framework for additively manufactured Ti-6Al-4V: Melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response[J]. JOM, 2019, 71: 3640
|
12 |
Liu P W, Wang Z, Xiao Y H, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials[J]. Int. J. Plast., 2020, 128: 102670
|
13 |
Zhang Q, Wang J C, Zhang Y C, et al. Simulation of multi-grain solidification and subsequent spinodal decomposition by using phase field crystal model[J]. Acta Phys. Sin., 2011, 60: 088104
|
|
张 琪, 王锦程, 张亚丛 等. 多晶凝固及后续调幅分解过程的晶体相场法模拟[J]. 物理学报, 2011, 60: 088104
|
14 |
Kodama T, Nakai R, Goto K, et al. Preparation of an Au-Pt alloy free from artifacts in magnetic resonance imaging[J]. Magn. Reson. Imaging, 2017, 44: 38
doi: S0730-725X(17)30124-8
pmid: 28700894
|
15 |
Silvestri Z, Davis R S, Genevès G, et al. Volume magnetic susceptibility of gold-platinum alloys: Possible materials to make mass standards for the watt balance experiment[J]. Metrologia, 2003, 40: 172
|
16 |
Liu M W, Weissmüller J. Phase decomposition in nanoporous Au-Pt[J]. Acta Mater., 2022, 241: 118419
|
17 |
Celik F A, Özel S. A simulation study on the orientational phase transformation behavior of Au-Pt alloy for different concentration of Pt[J]. Solid State Commun., 2020, 316-317: 113940
|
18 |
Vidano S, Novara C, Pagone M, et al. The LISA DFACS: Model Predictive Control design for the test mass release phase[J]. Acta Astron., 2022, 193: 731
|
19 |
Kim S G. A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties[J]. Acta Mater., 2007, 55: 4391
|
20 |
Steinbach I, Pezzolla F. A generalized field method for multiphase transformations using interface fields[J]. Physica, 1999, 134D: 385
|
21 |
Xu X N, Qin G W, Ren Y P, et al. Experimental study of the miscibility gap and calculation of the spinodal curves of the Au-Pt system[J]. Scr. Mater., 2009, 61: 859
|
22 |
Grolier V, Schmid-Fetzer R. Experimental study of Au-Pt-Sn phase equilibria and thermodynamic assessment of the Au-Pt and Au-Pt-Sn systems[J]. J. Electron. Mater., 2008, 37: 264
|
23 |
Liu Y J, Wang J, Du Y, et al. Phase boundary migration, Kirkendall marker shift and atomic mobilities in fcc Au-Pt alloys[J]. Calphad, 2012, 36: 94
|
24 |
Rappaz M, Gandin C A. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
|
25 |
Ye W C, Kou H H, Liu Q Z, et al. Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation[J]. Int. J. Hydrogen Energy, 2012, 37: 4088
|
26 |
Ramanarayan H, Abinandanan T A. Spinodal decomposition in polycrystalline alloys[J]. Physica, 2003, 318A: 213
|
27 |
Li L L, Li Z M, da Silva A K, et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy[J]. Acta Mater., 2019, 178: 1
|
28 |
Guo C, Zhao Y P, Deng Y Y, et al. A phase-field study on interaction process of moving grain boundary and spinodal decomposition[J]. Acta Phys. Sin., 2022, 71: 078101
|
|
郭 灿, 赵玉平, 邓英远 等. 运动晶界与调幅分解相互作用过程的相场法研究[J]. 物理学报, 2022, 71: 078101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|