Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations
LI Zhishang, ZHAO Long, ZONG Hongxiang(), DING Xiangdong
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:
LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong. Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations. Acta Metall Sin, 2024, 60(10): 1388-1404.
A comprehensive understanding of the microscopic mechanisms underlying phase transitions and deformations in metallic materials is crucial for developing new materials that meet the nation's essential needs. Molecular dynamic simulation techniques, particularly those powered by machine-learning molecular force fields, are emerging as potent tools for unraveling atomic-scale phenomena. In this study, recent advancements in machine-learning molecular force fields were reviewed to investigate metallic phase transitions and deformations. First, the fundamental principles and evolution of machine-learning molecular force fields were introduced. Then, the phase transformation and deformation of metals were examined, providing insights into the kinetics of phase transitions and microscopic mechanisms. Finally, the challenges faced by current machine-learning molecular force fields in studying metallic phase transformations and deformations were identified, and a glimpse into future research directions was discussed.
Fig.1 Schematic of machine-learning force fields (MLFFs)[32-34] (i, j, k represent three different atoms; rij denotes the distance between atom i and atom j; rik denotes the distance between atom i and atom k; θjik represents the angle formed by the central atom i with atoms k and j)
Fig.2 Schematic of the DeepMD model. The frame in the box is an enlargement of a deep neural network (DNN). The relative positions of all neighbors with respect to atom i, i.e., { Rij }, is first converted to descriptor matrix { Dij }, then passed to the hidden layers to compute Ei[66] (E—total energy)
Fig.3 Schematic of graph-based atomic descriptor. The initial graph is represented by the set of atomic attributes V = {vi }, bond attributes E = {(ek, rk, sk )}, and global state attributes u. In the first update step, the bond attributes are updated. Information flows from atoms that form the bond, the state attributes, and the previous bond attribute to the new bond attributes. Similarly, the second and third steps update the atomic and global state attributes, respectively, by information flow among all three attributes. The final result is a new graph representation[75] (vi is an atomic attribute vector for atom i in a system; ek is the bond attribute vector for bond k, rk and sk are the atom indices forming bond k; MEGNet—MatErials Graph Network)
Fig.4 Trade-offs between accuracy and cost among different types of MLFFs. All potentials except EAM4 were refitted to the same tungsten data set. Computational costs were benchmarked with a 128-atom bcc-tungsten supercell[83] (EAM—embedded atom method; GAP—Gaussian approximation potential; SNAP, qSNAP—spectral neighbor analysis potential (SNAP) and its quadratic variant, respectively; MTP—moment tensor potential; DFT—density functional theory; LJ—Lennard-Jones function; RMSE—root-mean-squared error; RMSF—root-mean-square-fluctuation; σE—the range of the ground truth value of RMSE; σF—the range of the ground truth value of RMSF)
Fig.5 Application of MLFFs in dislocation dynamics of conventional metallic materials under quasi-static loading condition (a) screw dislocation core of bcc-Fe (τ—shear stress, a—Peierls valleys spacing, b—Burgers vector modulus)[90] (b) atoms at the dislocation core during a simulation snapshot, evidencing dislocation glide by kink-pair mechanism[90] (c) stress-dependent reaction path of the interaction between an incoming 1/2<110> screw dislocation and the semi-coherent Ni/Ni3Al interface with a preexisting interfacial dislocation[91] (d) variation of energy barrier as a function of the external stress for the first and second interacting stages[91]
Fig.6 Application of MLFFs in dislocation dynamics of high entropy alloys under qausi-static loading condition (a) expansion of dislocation loop in Ni16.67Co16.67Fe36.67Ti30 high-entropy alloys (HEAs) under shear stress τxy = 600 MPa at T = 300 K[94] (t—the duration of the simulation) (b) variation of velocity as a function of shear stress for both edge and screw dislocations at T = 300 K in Ni16.67Co16.67Fe36.67Ti30 HEAs[94] (c) dislocation line with cross-slip locking viewed from the y and z directions[93] (d110—interplanar spacing of the 110 crystal plane) (d, e) CSRO effects on screw dislocation velocity (d) and edge dislocation velocity (e) vs stress dependency at 1800 K (CSRO—chemical short-range order)[93]
Fig.7 Application of MLFFs in the mechanical behavior of nanocrystalline alloys[97] (a) a polycrystalline model for the quaternary NbMoTaW multi-principal element alloys (MPEA) with atoms colored according to the common neighbor analysis algorithm to identify different structure types (cyan: bulk bcc; orange: grain boundary (GB)) (b) the same polycrystalline model after random initialization with equimolar quantities of Nb, Mo, W, and Ta. Atoms are colored by elements (c) snapshot of polycrystalline model after hybrid Monte Carlo/molecular dynamics (MC/MD) simulations
Fig.8 Application of MLFFs in dislocation dynamics of conventional metallic materials (a) width of dislocation core as a function of the shock velocity in the elemental metals and bcc HEAs[98] (b) phase diagram of dislocation core and spatial distribution of local shear modulus (Gatom)[98] (c) microstructure of a Zr-10Nb (atomic fraction, %) single crystal at t = 12 ps in response to [001] β shock loading[99] (TB—twin boundary)
Fig.9 Application of MLFFs in phase transition of zirconium (a) predicted phase diagram of pure Zr as a function of pressure and temperature[106] (b) snapshots of the phase transformation processes in [0001] α shocked Zr single crystals with different piston velocities[104] (Insets show the neiborhood information of the atoms before and after the transformation. They correspond to the hcp and bcc structures, respectively) (c) typical microstructure evolution of β-Zr during cooling at pressure P = 0 GPa and P = 8.0 GPa using the present machine-learning (ML) potential[106]
Fig.10 Application of MLFFs in phase transition of Zr-Nb alloy[108] (a) MD simulation of the Zr-10Nb single crystal showing the formation of local interlayer twists (LITs) (b) temperature-pressure phase diagram of Zr-Nb alloys from MD simulations
Fig.11 Application of MLFFs in phase transition of the high-pressure solid alkali metal potassium (a) forcefield simulated phase diagram of potassium[118] (b) top view and side view of the incommensurate host-guest (HG) structure K-III (a, b, c—lattice constants) (c) correlation along the chains, showing long-range oscillatory order at 250 K (blue) and exponentially decaying short-ranged order at 750 K (red)[118](—the intrachain correlation function, Δz(cg)—the difference in the z-directional displacement between atoms, expressed as multiples of the guest lattice constant) (d, e) typical microstructure evolution of bicrystalline KIII-fcc upon isothermal annealing at 16 and 21 GPa[117] (Blue boxes outline the presence of disordered regions)
Fig.12 Application of MLFFs in phase transition of the liquid alkali metal potassium (a) heat capacity (cp ) at different temperatures varies with pressure[120] (b) normalized diffusion constant vs pressure for selected temperatures (D—diffusion constant) [120] (c) radial distribution functions (RDFs) g(r) at selected pressures and 650 K (d) heat map of distribution of coordination numbers vs pressure at 650 K[120] (e) electron localization function (ELF) values at 2, 16, and 26 GPa are shown in the RGB scale from 0 (blue) to 0.70 (red), with 0.35 (green) [120]
1
Christian J W. The Theory of Transformations in Metals and Alloys Theory [M]. Oxford: Pergamon Press, 2002: 1
2
Li J J, Deepak F L. In situ kinetic observations on crystal nucleation and growth [J]. Chem. Rev., 2022, 122: 16911
3
Schneider D K, Shi W, Andi B, et al. FMX—The frontier microfocusing macromolecular crystallography beamline at the national synchrotron light source II [J]. J. Synchrot. Radiat., 2021, 28: 650
4
Wang P, Cai W L, Zhang Q, et al. Physical design and performance research of two counter-rotating T0 choppers for the multi-physics neutron diffractometer at China Spallation Neutron Source [J]. Nucl. Instrum. Methods Phys. Res., 2023, 1055A: 168520
5
Liu T W, Liang L W, Raabe D, et al. The martensitic transition pathway in steel [J]. J. Mater. Sci. Technol., 2023, 134: 244
doi: 10.1016/j.jmst.2022.06.023
6
Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045
7
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55: 2471
pmid: 10032153
8
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727
9
Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
10
Blank T B, Brown S D, Calhoun A W, et al. Neural network models of potential energy surfaces [J]. J. Chem. Phys., 1995, 103: 4129
11
Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559: 547
12
Dragoni D, Daff T D, Csányi G, et al. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron [J]. Phys. Rev. Mater., 2018, 2: 013808
13
Hansen K, Biegler F, Ramakrishnan R, et al. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space [J]. J. Phys. Chem. Lett., 2015, 6: 2326
pmid: 26113956
14
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
15
Zeng J Q, Cao L Q, Xu M Y, et al. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation [J]. Nat. Commun., 2020, 11: 5713
doi: 10.1038/s41467-020-19497-z
pmid: 33177517
16
Chenoweth K, Van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J]. J. Phys. Chem., 2008, 112A: 1040
17
Li S Z, Ding X D, Li J, et al. High-efficiency mechanical energy storage and retrieval using interfaces in nanowires [J]. Nano Lett., 2010, 10: 1774
doi: 10.1021/nl100263p
pmid: 20369897
18
Zhou Y X, Zhang W, Ma E, et al. Device-scale atomistic modelling of phase-change memory materials [J]. Nat. Electron., 2023, 6: 746
19
Wang G J, Sun Z M. Atomic insights into device-scale phase-change memory materials using machine learning potential [J]. Sci. Bull., 2023, 68: 3105
20
Artrith N, Kolpak A M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: A combination of DFT and accurate neural network potentials [J]. Nano Lett., 2014, 14: 2670
doi: 10.1021/nl5005674
pmid: 24742028
21
Esterhuizen J A, Goldsmith B R, Linic S. Interpretable machine learning for knowledge generation in heterogeneous catalysis [J]. Nat. Catal., 2022, 5: 175
22
Wang G J, Wang C R, Zhang X G, et al. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations [J]. iScience, 2024, 27: 109673
23
Ercolessi F, Adams J B. Interatomic potentials from first-principles calculations: The force-matching method [J]. Europhys. Lett., 1994, 26: 583
24
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
25
Bartók A P, Csányi G. Gaussian approximation potentials: A brief tutorial introduction [J]. Int. J. Quantum Chem., 2015, 115: 1051
26
Shao Y Q, Hellström M, Mitev P D, et al. PiNN: A python library for building atomic neural networks of molecules and materials [J]. J. Chem. Inf. Model., 2020, 60: 1184
doi: 10.1021/acs.jcim.9b00994
pmid: 31935100
27
Behler J. RuNNer—A program for constructing high-dimensional neural network potentials [Z]. Göttingen: Universität Göttingen, 2020
28
Novikov I S, Gubaev K, Podryabinkin E V, et al. The MLIP package: Moment tensor potentials with MPI and active learning [J]. Mach. Learn., 2021, 2: 025002
29
Schütt K T, Sauceda H E, Kindermans P J, et al. SchNet—A deep learning architecture for molecules and materials [J]. J. Chem. Phys., 2018, 148: 241722
30
Chen C, Ong S P. A universal graph deep learning interatomic potential for the periodic table [J]. Nat. Comput. Sci., 2022, 2: 718
doi: 10.1038/s43588-022-00349-3
pmid: 38177366
31
Deng B W, Zhong P C, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling [J]. Nat. Mach. Intell., 2023, 5: 1031
32
Reinhardt A, Cheng B Q. Quantum-mechanical exploration of the phase diagram of water [J]. Nat. Commun., 2021, 12: 588
doi: 10.1038/s41467-020-20821-w
pmid: 33500405
33
Chen C, Ong S P. AtomSets as a hierarchical transfer learning framework for small and large materials datasets [J]. npj Comput. Mater., 2021, 7: 173
34
Kaliakin D S, Zaari R R, Varganov S A. 3D printed potential and free energy surfaces for teaching fundamental concepts in physical chemistry [J]. J. Chem. Educ., 2015, 92: 2106
35
Glass C W, Oganov A R, Hansen N. USPEX—Evolutionary crystal structure prediction [J]. Comput. Phys. Commun., 2006, 175: 713
36
Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys. Rev., 2010, 82B: 094116
37
Wang J Q, Li C C, Shin S, et al. Accelerated atomic data production in ab initio molecular dynamics with recurrent neural network for materials research [J]. J. Phys. Chem., 2020, 124C: 14838
38
Lima F S, Alves V M C, Araujo A C B. Metacontrol: A python based application for self-optimizing control using metamodels [J]. Comput. Chem. Eng., 2020, 140: 106979
39
Tang K J, Wan X L, Yang C. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations [J]. J. Comput. Phys., 2023, 476: 111868
40
Laio A, Parrinello M. Escaping free-energy minima [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 12562
pmid: 12271136
41
Montalenti F, Voter A F. Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method [J]. J. Chem. Phys., 2002, 116: 4819
42
Berg B A, Neuhaus T. Multicanonical ensemble: A new approach to simulate first-order phase transitions [J]. Phys. Rev. Lett., 1992, 68: 9
pmid: 10045099
43
Wang F G, Landau D P. Efficient, multiple-range random walk algorithm to calculate the density of states [J]. Phys. Rev. Lett., 2001, 86: 2050
pmid: 11289852
44
Skilling J. Nested sampling for general Bayesian computation [J]. Bayesian Anal, 2006, 1: 833
45
Morozov A N, Lin S H. Accuracy and convergence of the Wang-Landau sampling algorithm [J]. Phys. Rev., 2007, 76E: 026701
46
Bartók A P, Kondor R, Csányi G. On representing chemical environments [J]. Phys. Rev., 2013, 87B: 184115
47
Huo H Y, Rupp M. Unified representation of molecules and crystals for machine learning [J]. Mach. Learn., 2022, 3: 045017
48
Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J]. J. Chem. Phys., 2011, 134: 074106
49
Damewood J, Karaguesian J, Lunger J R, et al. Representations of materials for machine learning [J]. Annu. Rev. Mater. Res., 2023, 53: 399
50
Rupp M, Tkatchenko A, Müller K R, et al. Fast and accurate modeling of molecular atomization energies with machine learning [J]. Phys. Rev. Lett., 2012, 108: 058301
51
Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems [J]. Physica, 1984, 128A: 334
52
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 [C]. Montreal: MIT Press, 2015: 28
53
Reiser P, Neubert M, Eberhard A, et al. Graph neural networks for materials science and chemistry [J]. Commun. Mater., 2022, 3: 93
54
Thompson A P, Swiler L P, Trott C R, et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials [J]. J. Comput. Phys., 2015, 285: 316
55
Shapeev A V. Moment tensor potentials: A class of systematically improvable interatomic potentials [J]. Multiscale Model. Simul., 2016, 14: 1153
56
Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations [J]. Phys. Rev., 2015, 92B: 094306
57
Bartók A P, Payne M C, Kondor R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons [J]. Phys. Rev. Lett., 2010, 104: 136403
58
Park C W, Kornbluth M, Vandermause J, et al. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture [J]. npj Comput. Mater., 2021, 7: 73
59
Gasteiger J, Groß J, Günnemann S. Directional message passing for molecular graphs [DB/OL]. arXiv: 2003. 03123, 2020
60
Gasteiger J, Giri S, Margraf J T, et al. Fast and uncertainty-aware directional message passing for non-equilibrium molecules [DB/OL]. arXiv: 2011. 14115, 2020
61
Kung S Y. Kernel Methods and Machine Learning [M]. Cambridge: Cambridge University Press, 2014: 16
62
Bartók A P, Kermode J, Bernstein N, et al. Machine learning a general-purpose interatomic potential for silicon [J]. Phys. Rev., 2018, 8X: 041048
63
Sastry S, Austen Angell C. Liquid-liquid phase transition in supercooled silicon [J]. Nat. Mater., 2003, 2: 739
pmid: 14556000
64
Fan Z, Tanaka H. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon [J]. Nat. Commun., 2024, 15: 368
doi: 10.1038/s41467-023-44332-6
pmid: 38228606
65
Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks [J]. Chem. Phys. Lett., 2004, 395: 210
66
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
67
Ghasemi S A, Hofstetter A, Saha S, et al. Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network [J]. Phys. Rev., 2015, 92B: 045131
68
Khorshidi A, Peterson A A. Amp: A modular approach to machine learning in atomistic simulations [J]. Comput. Phys. Commun., 2016, 207: 310
69
Chen M S, Morawietz T, Mori H, et al. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials [J]. J. Chem. Phys., 2021, 155: 074801
70
Thompson A P, Aktulga H M, Berger R, et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Comput. Phys. Commun., 2022, 271: 108171
71
Zeng J Z, Zhang D, Lu D H, et al. DeePMD-kit v2: A software package for deep potential models [J]. J. Chem. Phys., 2023, 159: 054801
72
Lu D H, Wang H, Chen M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Comput. Phys. Commun., 2021, 259: 107624
73
Jia W L, Wang H, Chen M H, et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning [A] SC20: International Conference for High Performance Computing, Networking, Storage and Analysis [C]. Atlanta: IEEE, 2020
74
Bonati L, Parrinello M. Silicon liquid structure and crystal nucleation from ab initio deep metadynamics [J]. Phys. Rev. Lett., 2018, 121: 265701
75
Chen C, Ye W K, Zuo Y X, et al. Graph networks as a universal machine learning framework for molecules and crystals [J]. Chem. Mater., 2019, 31: 3564
doi: 10.1021/acs.chemmater.9b01294
76
Tran K, Ulissi Z W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution [J]. Nat. Catal., 2018, 1: 696
77
Park C W, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery [J]. Phys. Rev. Mater., 2020, 4: 063801
78
Gu G H, Jang J, Noh J, et al. Perovskite synthesizability using graph neural networks [J]. npj Comput. Mater., 2022, 8: 71
79
Lee J, Asahi R. Transfer learning for materials informatics using crystal graph convolutional neural network [J]. Comput. Mater. Sci., 2021, 190: 110314
80
Chanussot L, Das A, Goyal S, et al. Open catalyst 2020 (OC20) dataset and community challenges [J]. ACS Catal., 2021, 11: 6059
81
Wang G J, Sun Y Q, Zhou J, et al. PotentialMind: Graph convolutional machine learning potential for Sb-Te binary compounds of multiple stoichiometries [J]. J. Phys. Chem., 2023, 127C: 24724
82
Gasteiger J, Becker F, Günnemann S. GemNet: Universal directional graph neural networks for molecules [A]. 35th International Conference on Neural Information Processing Systems [C]. Red Hook: Curran Associates Inc., 2021: 6790
83
Xie S R, Rupp M, Hennig R G. Ultra-fast interpretable machine-learning potentials [J]. npj Comput. Mater., 2023, 9: 162
84
Ma Y G, Pang L G, Wang R, et al. Phase transition study meets machine learning [J]. Chin. Phys. Lett., 2023, 40: 122101
85
Salmenjoki H, Alava M J, Laurson L. Machine learning plastic deformation of crystals [J]. Nat. Commun., 2018, 9: 5307
doi: 10.1038/s41467-018-07737-2
pmid: 30546114
86
Pizzagalli L, Demenet J L, Rabier J. Theoretical study of pressure effect on the dislocation core properties in semiconductors [J]. Phys. Rev., 2009, 79B: 045203
87
Landa A, Klepeis J, Söderlind P, et al. Ab initio calculations of elastic constants of the bcc V-Nb system at high pressures [J]. J. Phys. Chem. Solids, 2006, 67: 2056
88
Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
pmid: 14991017
89
Jin Z H, Gao H J, Gumbsch P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten [J]. Phys. Rev., 2008, 77B: 094303
90
Maresca F, Dragoni D, Csányi G, et al. Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential [J]. npj Comput. Mater., 2018, 4: 69
91
Li X Z, Han C X, Yue X D, et al. Influence of interfacial dislocation network on strain-rate sensitivity in Ni-based single crystal superalloys [J]. Scr. Mater., 2024, 240: 115838
92
Chen B, Li S Z, Ding J, et al. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys [J]. Scr. Mater., 2023, 222: 115048
93
Yin S, Zuo Y X, Abu-Odeh A, et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order [J]. Nat. Commun., 2021, 12: 4873
doi: 10.1038/s41467-021-25134-0
pmid: 34381027
94
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117
pmid: 32601202
95
Zheng H, Fey L T W, Li X G, et al. Multi-scale investigation of short-range order and dislocation glide in MoNbTi and TaNbTi multi-principal element alloys [J]. npj Comput. Mater., 2023, 9: 89
96
Li X G, Xu S Z, Zhang Q, et al. Complex strengthening mechanisms in nanocrystalline Ni-Mo alloys revealed by a machine-learning interatomic potential [J]. J. Alloy. Compd., 2023, 952: 169964
97
Li X G, Chen C, Zheng H, et al. Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy [J]. npj Comput. Mater., 2020, 6: 70
98
Zhao L, Zong H X, Ding X D, et al. Anomalous dislocation core structure in shock compressed bcc high-entropy alloys [J]. Acta Mater., 2021, 209: 116801
99
Li H J, Zhao L, Ding X D, et al. The role of chemical disorder in β→ω phase transformation and deformation twinning in shock compressed Zr-Nb alloys [Z]. Available at SSRN 4717843
100
He R H, Hashimoto M, Karapetyan H, et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions [J]. Science, 2011, 331: 1579
101
Yeh A, Soh Y A, Brooke J, et al. Quantum phase transition in a common metal [J]. Nature, 2002, 419: 459
102
Gyorffy B L, Pindor A J, Staunton J, et al. A first-principles theory of ferromagnetic phase transitions in metals [J]. J. Phys., 1985, 15F: 1337
103
Jamieson J C. Crystal structures of titanium, zirconium, and hafnium at high pressures [J]. Science, 1963, 140: 72
pmid: 17746009
104
Zong H X, He P, Ding X D, et al. Nucleation mechanism for hcp→bcc phase transformation in shock-compressed Zr [J]. Phys. Rev., 2020, 101B: 144105
105
Zong H X, Luo Y F, Ding X D, et al. hcp→ω phase transition mechanisms in shocked zirconium: A machine learning based atomic simulation study [J]. Acta Mater., 2019, 162: 126
106
Zong H X, Pilania G, Ding X D, et al. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning [J]. npj Comput. Mater., 2018, 4: 48
107
Wang H, Dmowski W, Wang Z, et al. Transformation pathway from alpha to omega and texture evolution in Zr via high-pressure torsion [J]. Appl. Phys. Lett., 2019, 114: 061903
108
Li H J, Zhao L, Zong H X, et al. Enhancing the stability of the ω phase of zirconium alloys via local interlayer twists [J]. Phys. Rev., 2023, 107B: 184117
109
Nitol M S, Dickel D E, Barrett C D. Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium [J]. Acta Mater., 2022, 224: 117347
110
Deng X Z, Lang L, Mo Y F, et al. Solid-solid phase transition of tungsten induced by high pressure: A molecular dynamics simulation [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2980
111
Kruglov I A, Yanilkin A, Oganov A R, et al. Phase diagram of uranium from ab initio calculations and machine learning [J]. Phys. Rev., 2019, 100B: 174104
112
Tang H, Zhang Y, Li Q J, et al. High accuracy neural network interatomic potential for NiTi shape memory alloy [J]. Acta Mater., 2022, 238: 118217
113
Kostiuchenko T, Körmann F, Neugebauer J, et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials [J]. npj Comput. Mater., 2019, 5: 55
114
Bardeen J. Compressibilities of the alkali metals [J]. J. Chem. Phys., 1938, 6: 372
115
Gingrich N S, Heaton L. Structure of alkali metals in the liquid state [J]. J. Chem. Phys., 1961, 34: 873
116
Zhao L, Zong H X, Ding X D, et al. Commensurate-incommensurate phase transition of dense potassium simulated by machine-learned interatomic potential [J]. Phys. Rev., 2019, 100B: 220101
117
Zhao L, Zong H X, Ding X D, et al. Anomalous thermophysical properties and electride transition in fcc potassium [J]. Phys. Rev., 2021, 104B: 104107
118
Robinson V N, Zong H X, Ackland G J, et al. On the chain-melted phase of matter [J]. Proc. Natl. Acad. Sci. USA, 2019, 116: 10297
doi: 10.1073/pnas.1900985116
pmid: 30975752
119
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
120
Zong H X, Robinson V N, Hermann A, et al. Free electron to electride transition in dense liquid potassium [J]. Nat. Phys., 2021, 17: 955
121
Polsin D N, Lazicki A, Gong X C, et al. Structural complexity in ramp-compressed sodium to 480 GPa [J]. Nat. Commun., 2022, 13: 2534
doi: 10.1038/s41467-022-29813-4
pmid: 35534461
122
Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation [J]. APL Mater., 2013, 1: 011002
123
Kirklin S, Saal J E, Meredig B, et al. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies [J]. npj Comput. Mater., 2015, 1: 15010
124
Jain A, Hautier G, Moore C J, et al. A high-throughput infrastructure for density functional theory calculations [J]. Comput. Mater. Sci., 2011, 50: 2295
125
Landis D D, Hummelshøj J S, Nestorov S, et al. The computational materials repository [J]. Comput. Sci. Eng., 2012, 14: 51
126
Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
127
Wang G J, Peng L Y, Li K Q, et al. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design [J]. Comput. Mater. Sci., 2021, 186: 110064
128
Wells B A, Chaffee A L. Ewald summation for molecular simulations [J]. J. Chem. Theory Comput., 2015, 11: 3684
doi: 10.1021/acs.jctc.5b00093
pmid: 26574452
129
Cerutti D S, Duke R E, Darden T A, et al. Staggered mesh Ewald: An extension of the smooth particle-mesh Ewald method adding great versatility [J]. J. Chem. Theory Comput., 2009, 5: 2322
doi: 10.1021/ct9001015
pmid: 20174456