Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (3): 377-387    DOI: 10.11900/0412.1961.2022.00406
Research paper Current Issue | Archive | Adv Search |
Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel
YANG Ping(), MA Dandan, GU Chen, GU Xinfu
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

YANG Ping, MA Dandan, GU Chen, GU Xinfu. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel. Acta Metall Sin, 2024, 60(3): 377-387.

Download:  HTML  PDF(4234KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Compared with high-grade electrical steel, low-grade electrical steel has the advantages of low cost and high production quantity but low profits. Therefore, researchers often focus on studying high-grade electrical steel without phase transformation. The microstructure evolution of low-grade electrical steel is more complicated compared to high-grade steel due to the three transformation stages— casting, hot rolling, and final annealing—that are present between austenite and ferrite during their processing. During continuous casting, the <100> columnar grains commonly formed in the low-grade electrical steel cast slabs with phase transformation illustrate the characteristics of the pronounced transformation delay and suppression. In such conditions, the change in hot rolling temperature will cause diversity in hot-rolled microstructures and textures and affect the subsequent cold rolling and annealing microstructure and texture. Based on the previous studies on the effect of hot rolling processes on the transformation texture of industrial low-grade electrical steel and the observation of the transformation delay and suppression of columnar grains in cast slabs, this work further investigates the influence of the initial microstructures before cold rolling and cold rolling reduction on the transformation texture and explores the law of texture inheritance. In particular, the idea of retaining {100} texture using metastable ferrite hot rolling is proposed to improve magnetic properties. The results show that there are more {100} deformed grains in the hot-rolled plate heated at low temperature, and the {100} texture inheritance is obvious after cold rolling and transformation annealing, which effectively improves the magnetic properties. The {100} transformation texture is weakened with the increase in rolling reduction because the initial {100} grains gradually disappear with increasing rolling reduction. An analysis shows that although the {100} transformation texture induced by the surface effect is hindered by the alloying Al and P elements in the used industrial electrical steel, the favorable initial {100} texture produced using low-temperature hot rolling promotes the memory-type transformation texture. In addition, the transformation texture obtained at a high annealing temperature is still better than the recrystallization texture obtained at a low annealing temperature. The significance of these results lies in the possible future practice of enhancing {100} texture in hot rolled plate by metastable ferrite rolling to improve magnetic properties in final annealed sheets.

Key words:  low-grade electrical steel      phase transformation      columnar crystal      texture      magnetic property      rolling     
Received:  20 August 2022     
ZTFLH:  TG111.5  
Fund: National Natural Science Foundation of China(51931002)
Corresponding Authors:  YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00406     OR     https://www.ams.org.cn/EN/Y2024/V60/I3/377

Fig.1  Schematic of rolling and annealing process routes (Inset shows the schematic of microstructure of initial sample)
Fig.2  Inverse pole figure (IPF)-Z maps (a-d) and orientation distribution function (ODF) figures at φ2 = 45° section (e-h) for through-thickness cross section of hot rolling samples in processes A (a, e), B (b, f), C (c, g), and D (d, h), respectively[1] (φ1, Φ, φ2—Euler angles; RD and ND represent rolling direction and normal direction of the sheet, respectively; IPF-Z represents the projection of the grain orientations that are parallel to ND in the crystal coordinate system)
Fig.3  IPF-Z maps (a-e) and ODF figures (φ2 = 45°) (f-j) for through thickness cross section of annealed samples at 1100oC for 7 min after cold rolling (0.50 mm, 75% reduction) in the hot rolling processes A (a, f), B (b, g), C (c, h), D (d, i), and E (e, j), respectively
Fig.4  Average grain sizes of annealed samples at 1100oC for 7 min after cold rolling (0.50 mm, 75% reduction) in different hot rolling processes
Fig.5  IPF-Z maps (a-e) and ODF figures (φ2 = 45°) (f-j) for through thickness cross section of annealed samples at 1100oC for 7 min after cold rolling (0.20 mm, 90% reduction) in the hot rolling processes A (a, f), B (b, g), C (c, h), D (d, i), and E (e, j), respectively
Fig.6  Average grain sizes of annealed samples at 1100oC for 7 min after cold rolling (0.20 mm, 90% reduction) in different hot rolling processes
Fig.7  IPF-Z maps (a, b) and ODF figures (φ2 = 45°) (c, d) for through thickness cross section of annealed samples at 950oC for 5 min after different cold rolling processes in the hot rolling process C (a, c) 0.60 mm, 70% reduction (b, d) 0.20 mm, 90% reduction
Fig.8  IPF-Z maps (a, b) and ODF figures (φ2 = 45°) (c, d) for through thickness cross section of annealed samples at 950oC for 5 min after different cold rolling processes in the hot rolling process D (a, c) 0.60 mm, 70% reduction (b, d) 0.20 mm, 90% reduction
Fig.9  IPF-Z maps (a, b) and ODF figures (φ2 = 45°) (c, d) for through thickness cross section of annealed samples at 1000oC for 5 min after different cold rolling processes in the hot rolling process C (a, c) 0.60 mm, 70% reduction (b, d) 0.20 mm, 90% reduction
Fig.10  IPF-Z maps (a, b) and ODF figures (φ2 = 45°) (c, d) for through thickness cross section of annealed samples at 1000oC for 5 min after different cold rolling processes in the hot rolling process D (a, c) 0.60 mm, 70% reduction (b, d) 0.20 mm, 90% reduction
Fig.11  Iron loss (P1.5) (a, c) and magnetic induction (B50) (b, d) of transformation annealed samples at 1100oC for 7 min after different cold rolling processes in hot rolling processes A-E, respectively (TD—transverse direction)
(a, b) 0.50 mm, 75% reduction (c, d) 0.20 mm, 90% reduction
1 Gu C, Yang P, Mao W M. The influence of rolling process on the microstructure, texture and magnetic properties of low grades non-oriented electrical steel after phase transformation annealing [J]. Acta Metall. Sin., 2019, 55: 181
doi: 10.11900/0412.1961.2018.00187
顾 晨, 杨 平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响 [J]. 金属学报, 2019, 55: 181
2 Liu H T, Li H L, Schneider J, et al. Effects of coiling temperature after hot rolling on microstructure, texture, and magnetic properties of non-oriented electrical steel in strip casting processing route [J]. Steel Res. Int., 2016, 87: 1256
doi: 10.1002/srin.v87.10
3 Wu S J, Li H, Yue C X, et al. Effect of finishing temperature on magnetic properties of medium and low grade non-oriented silicon steel [J]. Trans. Mater. Heat Treat., 2019, 40(9): 89
吴圣杰, 李 慧, 岳重祥 等. 终轧温度对中低牌号无取向硅钢磁性能的影响 [J]. 材料热处理学报, 2019, 40(9): 89
4 An L Z, Liu H T, Wang G D. Effects of hot-rolled coiled temperature on microstructure, texture and magnetic properties of low silicon non-oriented electrical steels [J]. Electr. Steel, 2021, 3(1): 15
安灵子, 刘海涛, 王国栋. 热轧卷取温度对低硅无取向硅钢组织、织构及磁性能的影响 [J]. 电工钢, 2021, 3(1): 15
5 An L Z, Wang Y P, Wang G D, et al. Fabrication of high-performance low silicon non-oriented electrical steels by a new method: Low-finishing-temperature hot rolling combined with batch annealing [J]. J. Magn. Magn. Mater., 2022, 546: 168907
doi: 10.1016/j.jmmm.2021.168907
6 Yashiki H, Okamoto A. Effect of hot-band grain size on magnetic properties of non-oriented electrical steels [J]. IEEE Trans. Magn., 1987, 23: 3086
doi: 10.1109/TMAG.1987.1065261
7 Wu X L, Yang P, Gu X F, et al. Effects of normalizing treatment on microstructure, texture and magnetic properties of 50 W800 electrical steel [J]. Electr. Steel, 2019, 1(1): 29
武晓龙, 杨 平, 顾新福 等. 常化处理对50W800电工钢组织、织构与磁性的影响 [J]. 电工钢, 2019, 1(1): 29
8 Xie L, Yang P, Xia D S, et al. Microstructure and texture evolution in a non-oriented electrical steel during γα transformation under various atmosphere conditions [J]. J. Magn. Magn. Mater., 2015, 374: 655
doi: 10.1016/j.jmmm.2014.09.033
9 Xie L, Yang P, Zhang N, et al. Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation [J]. J. Magn. Magn. Mater., 2014, 356: 1
doi: 10.1016/j.jmmm.2013.12.045
10 Xie L, Yang P, Zhang N, et al. Texture optimization for intermediate Si-containing non-oriented electrical steel [J]. J. Mater. Eng. Perform., 2014, 23: 3849
doi: 10.1007/s11665-014-1201-7
11 Yang P, Xia D S, Wang J H, et al. Influence of processing parameters on microstructures, textures and magnetic properties in a Fe-0.43Si-0.5Mn electrical steel subjected to phase transformation treatment [A]. Proceeding of the 11th Annual Chinese Iron and Steel Congress [C]. Beijing Metallurgical Industry Press, 2017: 1
杨 平, 夏冬生, 王金华 等. 相变法制备Fe-0.43Si-0.5Mn电工钢时工艺参数对组织结构和磁性能的影响 [A]. 第十一届中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2017: 1
12 Yang P, Zhang L W, Wang J H, et al. Improvement of texture and magnetic properties by surface effect induced transformation in non-oriented Fe-0.82Si-1.37Mn steel sheets [J]. Steel Res. Int., 2018, 89: 1800045
doi: 10.1002/srin.v89.12
13 Sung J K, Lee D N, Wang D H, et al. Efficient generation of cube-on-face crystallographic texture in iron and its alloys [J]. ISIJ Int., 2011, 51: 284
doi: 10.2355/isijinternational.51.284
14 Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {100} <0vw> texture [J]. J. Appl. Phys., 2013, 113: 17A338
15 Sung J K, Lee D N. Evolution of crystallographic texture in pure iron and commercial steels by γ to α Transformation [J]. Mater. Sci. Forum, 2012, 706-709: 2657
doi: 10.4028/www.scientific.net/MSF.706-709
16 Wu X L, Gu C, Yang P, et al. Transformation delay and texture memory effect of columnar grained cast slab in low grades non-oriented electrical steels [J]. ISIJ Int., 2021, 61: 1669
doi: 10.2355/isijinternational.ISIJINT-2020-623
17 Wu X L, Yang P, Gu X F, et al. Effect of the initial columnar-grained inhomogeneity of electrical steels on the transformation temperature [J]. Steel Res. Int., 2022, 93: 2100388
doi: 10.1002/srin.v93.2
18 Wu X L, Jiang W N, Yang P, et al. Formation of {100} subgrain variants and Σ3 variants during phase transformation of columnar grains in electrical steel: Texture memory and variant selection [J]. Steel Res. Int., 2022, 93: 2100594
doi: 10.1002/srin.v93.5
19 Yang P, Ma D D, Gu X F, et al. On the transformation textures influenced by deformation in electrical steels, high manganese steels and pure titanium sheets [J]. Front. Mater. Sci., 2022, 16: 220582
doi: 10.1007/s11706-022-0582-z
20 Tomida T, Wakita M, Yasuyama M, et al. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov-Sachs relation [J]. Acta Mater., 2013, 61: 2828
doi: 10.1016/j.actamat.2013.01.015
21 Xie L, He M T, Sun L Y, et al. Columnar grain growth in non-oriented electrical steels via plastic deformation of an initial columnar-grained solidification microstructure [J]. Mater. Lett., 2020, 258: 126797
doi: 10.1016/j.matlet.2019.126797
22 Xie L, Liu S J, He M T, et al. Growth and strain behavior of columnar grains in Fe-0.5%Mn alloy by hot-rolling [J]. J. Alloys Compd., 2021, 877: 160257
doi: 10.1016/j.jallcom.2021.160257
23 Cheng L, Yang P, Fang Y P, et al. Preparation of non-oriented silicon steel with high magnetic induction using columnar grains [J]. J. Magn. Magn. Mater., 2012, 324: 4068
doi: 10.1016/j.jmmm.2012.07.019
24 Cheng L, Zhang N, Yang P, et al. Retaining {100} texture from initial columnar grains in electrical steels [J]. Scr. Mater., 2012, 67: 899
doi: 10.1016/j.scriptamat.2012.08.023
25 Zhang N, Yang P, Mao W M. {001}<120>-{113}<361> recrystallization textures induced by initial {001} grains and related microstructure evolution in heavily rolled electrical steel [J]. Mater. Charact., 2016, 119: 225
doi: 10.1016/j.matchar.2016.08.009
26 Zhang N, Yang P, Mao W M. Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability [J]. J. Magn. Magn. Mater., 2016, 397: 125
doi: 10.1016/j.jmmm.2015.08.066
[1] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[2] LI Longjian, LI Rengeng, ZHANG Jiajun, CAO Xinghao, KANG Huijun, WANG Tongmin. Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. 金属学报, 2024, 60(3): 405-416.
[3] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[7] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[8] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[12] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[14] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[15] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
No Suggested Reading articles found!