Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (6): 781-791    DOI: 10.11900/0412.1961.2020.00537
Research paper Current Issue | Archive | Adv Search |
Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy
SHEN Gang1, ZHANG Wentai1, ZHOU Chao2, JI Huanzhong3, LUO En3, ZHANG Haijun4(), WAN Guojiang1()
1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3.West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
4.The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, China
Cite this article: 

SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy. Acta Metall Sin, 2022, 58(6): 781-791.

Download:  HTML  PDF(5218KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zinc possesses a moderate degradation rate compared to magnesium and iron. Accordingly, it has been studied as a biodegradable metal in recent years. However, its mechanical properties barely meet the clinical requirements of implant applications. Moreover, the non-uniform corrosion mode of zinc can result in the premature mechanical failure of the implants. In the present study, a hot-extruded Zn-2Cu-0.5Zr (mass fraction, %) alloy was fabricated with improved mechanical properties and degradation behavior suitable for implant use. The microstructure of the Zn-2Cu-0.5Zr alloy was composed of a Zn matrix, CuZn5 phase, and Zn22Zr phase. Owing to the evenly distributed second phase particles and refined grain size, the yield strength, ultimate tensile strength, and elongation of the hot-extruded Zn-2Cu-0.5Zr alloy were improved to 192 MPa, 213 MPa, and 61%, respectively, which were significantly higher than those of Zn and Zn-2Cu alloy. Furthermore, the refined grains also rendered a more uniform degradation mode to the Zn matrix than Zn and Zn-2Cu alloy. In conclusion, the hot-extruded Zn-2Cu-0.5Zr alloy may find promising applications in implants.

Key words:  biodegradable Zn-based alloy      microstructure      mechanical property      degradation behavior     
Received:  31 December 2020     
ZTFLH:  TG146.1  
Fund: National Key Research and Development Program of China(2016YFC1102500);Science and Technology Program of Sichuan Province(2020YFH0077)
About author:  WAN Guojiang, professor, Tel: (028)87600723, E-mail: guojiang.wan@home.swjtu.edu.cnZHANG Haijun, professor, Tel: (021)66300588, E-mail: zhanghaijun@tongji.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00537     OR     https://www.ams.org.cn/EN/Y2022/V58/I6/781

Fig.1  OM (a-c) and SEM (d-f) images of hot-extruded Zn (a, d), Zn-2Cu (b, e), and Zn-2Cu-0.5Zr (c, f) alloys (Insets in Figs.1d-f show the high magnified images)
Fig.2  XRD spectra of the hot-extruded Zn, Zn-2Cu, and Zn-2Cu-0.5Zr alloys
Fig.3  Mechanical properties of the hot-extruded Zn, Zn-2Cu, and Zn-2Cu-0.5Zr alloys
(a) representative stress-strain curves
(b) calculated yield strength (YS), ultimate tensile strength (UTS) and elongation at fracture
Fig.4  Potentiodynamic polarization (PDP) curves (a), Nyquist diagrams (b), Bode-impedance diagrams (c), and Bode-phase angle diagrams (d) of the hot-extruded Zn, Zn-2Cu, and Zn-2Cu-0.5Zr alloys in Hank's solution at (37 ± 0.5)oC (Ecorr—corrosion potential, icorr—corrosion current density, i—galvanic current density, Z"—imaginary part of impedance, Z'—real part of impedance, |Z|—impedance modulus)
SampleEcorr (vs SCE)icorrRsQpRpQctRct
VμA·cm-2Ω·cm210-6 S n ·Ω-1·cm-2Ω·cm210-6 S n ·Ω-1·cm-2kΩ·cm2
Zn-1.0357.2210.273.5937.770.740.56
Zn-2Cu-0.9613.1110.8119.12225.4814.150.68
Zn-2Cu-0.5Zr-0.9810.2410.658.18433.3465.431.54
Table 1  Fitting results of PDP curve and electrochemical impedance spectrum (EIS) data
Fig.5  Equivalent circuit of EIS plots
Fig.6  Low (a-c) and locally high (d-f) magnified surface morphologies of hot-extruded Zn immersed in Hank's solution at (37 ± 0.5)oC for 7 d (a, d), 14 d (b, e), and 28 d (c, f)
Fig.7  Low (a-c) and locally high (d-f) magnified surface morphologies of hot-extruded Zn-2Cu alloy immersed in Hank's solution at (37 ± 0.5)oC for 7 d (a, d), 14 d (b, e), and 28 d (c, f)
Fig.8  Low (a-c) and locally high (d-f) magnified surface morphologies of hot-extruded Zn-2Cu-0.5Zr alloy immersed in Hank's solution at (37 ± 0.5)oC for 7 d (a, d), 14 d (b, e), and 28 d (c, f)
Fig.9  Surface morphologies of hot-extruded Zn (a, d, g), Zn-2Cu (b, e, h), and Zn-2Cu-0.5Zr (c, f, i) alloys immersed in Hank's solution at (37 ± 0.5)oC for 7 d (a-c), 14 d (d-f), and 28 d (g-i) after removal of corrosion products, and locally high magnified SEM images of Figs.9g-i (j-l)
Fig.10  Corrosion rates calculated from weight loss of hot-extruded Zn, Zn-2Cu, and Zn-2Cu-0.5Zr alloys after immersion in Hank's solution at (37 ± 0.5)oC for different time
Fig.11  Schematic of the improvement mechanisms for the enhanced mechanical properties and degradation behavior of hot-extruded Zn-2Cu-0.5Zr alloy
1 Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng., 2014, R77: 1
2 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
doi: 10.1002/adma.201300226
3 Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Biomater., 2018, 71: 1
doi: S1742-7061(18)30125-9 pmid: 29530821
4 Bowen P K, Shearier E R, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys [J]. Adv. Healthc. Mater., 2016, 5: 1121
doi: 10.1002/adhm.201501019
5 Tapiero H, Tew K D. Trace elements in human physiology and pathology: Zinc and metallothioneins [J]. Biomed. Pharmacother., 2003, 57: 399
pmid: 14652165
6 Su Y C, Cockerill I, Wang Y D, et al. Zinc-based biomaterials for regeneration and therapy [J]. Trends Biotechnol., 2019, 37: 428
doi: 10.1016/j.tibtech.2018.10.009
7 Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
王鲁宁, 孟 瑶, 刘丽君 等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
8 Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0 pmid: 32165194
9 O'Connor J P, Kanjilal D, Teitelbaum M, et al. Zinc as a therapeutic agent in bone regeneration [J]. Materials, 2020, 13: 2211
doi: 10.3390/ma13102211
10 Vojtěch D, Kubásek J, Šerák P, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomater., 2011, 7: 3515
doi: 10.1016/j.actbio.2011.05.008 pmid: 21621017
11 Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
doi: 10.1016/j.jmbbm.2016.03.018
12 Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
doi: 10.11900/0412.1961.2017.00270
13 Chen Y Q, Zhang W T, Maitz M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline [J]. Corros. Sci., 2016, 111: 541
doi: 10.1016/j.corsci.2016.05.039
14 Ke G Z, Yue R, Huang H, et al. Effects of Sr addition on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Zn-Sr binary alloys [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1873
doi: 10.1016/S1003-6326(20)65346-8
15 Zhang E L, Fu S, Wang R X, et al. Role of Cu element in biomedical metal alloy design [J]. Rare Met., 2019, 38: 476
doi: 10.1007/s12598-019-01245-y
16 Tang Z B, Niu J L, Huang H, et al. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 182
doi: 10.1016/j.jmbbm.2017.05.013
17 Li P, Zhang W T, Dai J T, et al. Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants [J]. Mater. Sci. Eng., 2019, C103: 109826
18 Qu X H, Yang H T, Jia B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomater., 2020, 117: 400
doi: 10.1016/j.actbio.2020.09.041
19 Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
doi: 10.1038/s41467-019-14153-7
20 Pratiwi R Y, Trinanda A F, Fahmi M W G, et al. The effect of zirconium addition on corrosion behavior of Zn-Zr alloys as biodegradable orthopedic implant application [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 833: 012085
21 Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
doi: S1742-7061(19)30055-8 pmid: 30660777
22 Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Des., 2015, 83: 95
doi: 10.1016/j.matdes.2015.05.089
23 Yuan W, Xia D D, Zheng Y F, et al. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies [J]. Acta Biomater., 2020, 105: 290
doi: S1742-7061(20)30036-2 pmid: 31972366
24 Willbold E, Gu X N, Albert D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium [J]. Acta Biomater., 2015, 11: 554
doi: 10.1016/j.actbio.2014.09.041 pmid: 25278442
25 Zhang W T, Li P, Shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6: 975
26 Zhang X B, Yuan G Y, Mao L, et al. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy [J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
doi: 10.1016/j.jmbbm.2011.05.026
27 Ma D, Li Y, Ng S C, et al. Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys—I. Microstructure selection [J]. Acta Mater., 2000, 48: 419
doi: 10.1016/S1359-6454(99)00365-1
28 Yue R, Zhang J, Ke G Z, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy [J]. Mater. Sci. Eng., 2019, C150: 110106
29 Guo P S, Zhu X L, Yang L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: grain refinement mechanism, corrosion behavior, and biocompatibility in vivo [J]. Mater. Sci. Eng., 2021, C118: 111391
30 Pola A, Tocci M, Goodwin F E. Review of microstructures and properties of zinc alloys [J]. Metals, 2020, 10: 253
doi: 10.3390/met10020253
31 Cui X M, Yu Z L, Liu F, et al. Influence of secondary phases on crack initiation and propagation during fracture process of as-cast Mg-Al-Zn-Nd alloy [J]. Mater. Sci. Eng., 2019, A759: 708
32 Liu X W, Sun J K, Qiu K J, et al. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy [J]. J. Alloys Compd., 2016, 664: 444
doi: 10.1016/j.jallcom.2015.10.116
33 Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Des., 2019, 183: 108154
doi: 10.1016/j.matdes.2019.108154
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!