|
|
Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy |
SHEN Gang1, ZHANG Wentai1, ZHOU Chao2, JI Huanzhong3, LUO En3, ZHANG Haijun4( ), WAN Guojiang1( ) |
1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China 2.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 3.West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China 4.The Tenth People's Hospital of Shanghai, Tongji University, Shanghai 200072, China |
|
Cite this article:
SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy. Acta Metall Sin, 2022, 58(6): 781-791.
|
Abstract Zinc possesses a moderate degradation rate compared to magnesium and iron. Accordingly, it has been studied as a biodegradable metal in recent years. However, its mechanical properties barely meet the clinical requirements of implant applications. Moreover, the non-uniform corrosion mode of zinc can result in the premature mechanical failure of the implants. In the present study, a hot-extruded Zn-2Cu-0.5Zr (mass fraction, %) alloy was fabricated with improved mechanical properties and degradation behavior suitable for implant use. The microstructure of the Zn-2Cu-0.5Zr alloy was composed of a Zn matrix, CuZn5 phase, and Zn22Zr phase. Owing to the evenly distributed second phase particles and refined grain size, the yield strength, ultimate tensile strength, and elongation of the hot-extruded Zn-2Cu-0.5Zr alloy were improved to 192 MPa, 213 MPa, and 61%, respectively, which were significantly higher than those of Zn and Zn-2Cu alloy. Furthermore, the refined grains also rendered a more uniform degradation mode to the Zn matrix than Zn and Zn-2Cu alloy. In conclusion, the hot-extruded Zn-2Cu-0.5Zr alloy may find promising applications in implants.
|
Received: 31 December 2020
|
|
Fund: National Key Research and Development Program of China(2016YFC1102500);Science and Technology Program of Sichuan Province(2020YFH0077) |
About author: WAN Guojiang, professor, Tel: (028)87600723, E-mail: guojiang.wan@home.swjtu.edu.cnZHANG Haijun, professor, Tel: (021)66300588, E-mail: zhanghaijun@tongji.edu.cn
|
1 |
Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Mater. Sci. Eng., 2014, R77: 1
|
2 |
Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
doi: 10.1002/adma.201300226
|
3 |
Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Biomater., 2018, 71: 1
doi: S1742-7061(18)30125-9
pmid: 29530821
|
4 |
Bowen P K, Shearier E R, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys [J]. Adv. Healthc. Mater., 2016, 5: 1121
doi: 10.1002/adhm.201501019
|
5 |
Tapiero H, Tew K D. Trace elements in human physiology and pathology: Zinc and metallothioneins [J]. Biomed. Pharmacother., 2003, 57: 399
pmid: 14652165
|
6 |
Su Y C, Cockerill I, Wang Y D, et al. Zinc-based biomaterials for regeneration and therapy [J]. Trends Biotechnol., 2019, 37: 428
doi: 10.1016/j.tibtech.2018.10.009
|
7 |
Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
|
|
王鲁宁, 孟 瑶, 刘丽君 等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
|
8 |
Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0
pmid: 32165194
|
9 |
O'Connor J P, Kanjilal D, Teitelbaum M, et al. Zinc as a therapeutic agent in bone regeneration [J]. Materials, 2020, 13: 2211
doi: 10.3390/ma13102211
|
10 |
Vojtěch D, Kubásek J, Šerák P, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation [J]. Acta Biomater., 2011, 7: 3515
doi: 10.1016/j.actbio.2011.05.008
pmid: 21621017
|
11 |
Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
doi: 10.1016/j.jmbbm.2016.03.018
|
12 |
Zheng Y F, Yang H T. Research progress in biodegradable metals for stent application [J]. Acta Metall. Sin., 2017, 53: 1227
|
|
郑玉峰, 杨宏韬. 血管支架用可降解金属研究进展 [J]. 金属学报, 2017, 53: 1227
doi: 10.11900/0412.1961.2017.00270
|
13 |
Chen Y Q, Zhang W T, Maitz M F, et al. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline [J]. Corros. Sci., 2016, 111: 541
doi: 10.1016/j.corsci.2016.05.039
|
14 |
Ke G Z, Yue R, Huang H, et al. Effects of Sr addition on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Zn-Sr binary alloys [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1873
doi: 10.1016/S1003-6326(20)65346-8
|
15 |
Zhang E L, Fu S, Wang R X, et al. Role of Cu element in biomedical metal alloy design [J]. Rare Met., 2019, 38: 476
doi: 10.1007/s12598-019-01245-y
|
16 |
Tang Z B, Niu J L, Huang H, et al. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 182
doi: 10.1016/j.jmbbm.2017.05.013
|
17 |
Li P, Zhang W T, Dai J T, et al. Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants [J]. Mater. Sci. Eng., 2019, C103: 109826
|
18 |
Qu X H, Yang H T, Jia B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomater., 2020, 117: 400
doi: 10.1016/j.actbio.2020.09.041
|
19 |
Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
doi: 10.1038/s41467-019-14153-7
|
20 |
Pratiwi R Y, Trinanda A F, Fahmi M W G, et al. The effect of zirconium addition on corrosion behavior of Zn-Zr alloys as biodegradable orthopedic implant application [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2020, 833: 012085
|
21 |
Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
doi: S1742-7061(19)30055-8
pmid: 30660777
|
22 |
Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Des., 2015, 83: 95
doi: 10.1016/j.matdes.2015.05.089
|
23 |
Yuan W, Xia D D, Zheng Y F, et al. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies [J]. Acta Biomater., 2020, 105: 290
doi: S1742-7061(20)30036-2
pmid: 31972366
|
24 |
Willbold E, Gu X N, Albert D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium [J]. Acta Biomater., 2015, 11: 554
doi: 10.1016/j.actbio.2014.09.041
pmid: 25278442
|
25 |
Zhang W T, Li P, Shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6: 975
|
26 |
Zhang X B, Yuan G Y, Mao L, et al. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy [J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
doi: 10.1016/j.jmbbm.2011.05.026
|
27 |
Ma D, Li Y, Ng S C, et al. Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys—I. Microstructure selection [J]. Acta Mater., 2000, 48: 419
doi: 10.1016/S1359-6454(99)00365-1
|
28 |
Yue R, Zhang J, Ke G Z, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy [J]. Mater. Sci. Eng., 2019, C150: 110106
|
29 |
Guo P S, Zhu X L, Yang L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: grain refinement mechanism, corrosion behavior, and biocompatibility in vivo [J]. Mater. Sci. Eng., 2021, C118: 111391
|
30 |
Pola A, Tocci M, Goodwin F E. Review of microstructures and properties of zinc alloys [J]. Metals, 2020, 10: 253
doi: 10.3390/met10020253
|
31 |
Cui X M, Yu Z L, Liu F, et al. Influence of secondary phases on crack initiation and propagation during fracture process of as-cast Mg-Al-Zn-Nd alloy [J]. Mater. Sci. Eng., 2019, A759: 708
|
32 |
Liu X W, Sun J K, Qiu K J, et al. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy [J]. J. Alloys Compd., 2016, 664: 444
doi: 10.1016/j.jallcom.2015.10.116
|
33 |
Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Des., 2019, 183: 108154
doi: 10.1016/j.matdes.2019.108154
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|