Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (2): 239-247    DOI: 10.11900/0412.1961.2016.00356
Orginal Article Current Issue | Archive | Adv Search |
Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy
Mingzhe XI(),Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy. Acta Metall Sin, 2017, 53(2): 239-247.

Download:  HTML  PDF(8104KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To transform the columnar grain in the as-deposited GH4169 alloy to the exquiaxed grain and get better mechanical properties, a block sample of GH4169 alloy has been formed by using a technology of consecutive point-mode forging and laser rapid forming (CPF-LRF). During the process of CPF-LRF, GH4169 alloy was deposited by laser rapid forming firstly and then the deposited GH4169 alloy was deformed by consecutive point-mode forging. Both consecutive point-mode forging and laser rapid forming were alternately carried out until the completion of the forming of an objective part. The effects of heat treatment on the microstructures and mechanical properties of CPF-LRF GH4169 alloy have been investigated. The result shows that 980STA heat treatment fails to lead to recrystallization of CPF-LRF GH4169 alloy, and the tensile properties of 980STAed CPF-LRF GH4169 alloy can't meet the wrought standards. After the 1020STA heat treatment, the average recrystal grain size of GH4169 alloy is about 12.8 μm, and Laves phase can not be dissolved completely. The tensile properties of the 1020STAed CPF-LRF GH4169 alloy is superior to the wrought standards. Compared to the 1020STAed CPF-LRF GH4169 alloy, the tensile strength of 1050STAed CPF-LRF GH4169 alloy drops and its ductility increases due to complete dissolution of Laves phase and grain size increasing to 25.3 μm. The average grain size of the 1080STAed CPF-LRF GH4169 alloy is about 123.6 μm. Compared to 1020STAed and 1050STAed CPF-LRF GH4169, the tensile properties of 1080STAed CPF-LRF GH4169 has fallen substantially, which just satisfy the wrought standards.

Key words:  consecutive point-mode forging      laser rapid forming      GH4169 alloy      microstructure      tensile property     
Received:  02 August 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51375426 and 51375245)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00356     OR     https://www.ams.org.cn/EN/Y2017/V53/I2/239

Powder Fe Cr Ti Al Mo Nb C Ni
GH4169 18.4 19.7 1.04 0.64 3.0 5.17 0.33 Bal.
AMS:5663 16~20 17~21 0.65~1.15 0.1~0.8 2.8~3.3 4.75~5.5 0.08Max Bal.
Table 1  Chemical composition of GH4169 powders (mass fraction / %)
Designation Heat treatment
980STA 980 ℃, 1 h, AC+720 ℃, 8 h 2 h620 ℃, 8 h, AC
1020STA 1020 ℃, 1 h, AC+980 ℃, 1 h, AC+720 ℃, 8 h2 h620 ℃, 8 h, AC
1050STA 1050 ℃, 1 h, AC+980 ℃, 1 h, AC+720 ℃, 8 h2 h620 ℃, 8 h, AC
1080STA 1080 ℃, 1 h, AC+980 ℃, 1 h, AC+720 ℃, 8 h2 h620 ℃, 8 h, AC
Table 2  Heat treatments for CPF-LRF GH4169 alloy
Fig.1  Schematic of technical process of CPF-LRF
Fig.2  Microstructures and EDS analyses of CPF-LRF GH4169 alloy heat treated by 980STA
(a) columnar crystals (b) Laves phase and δ phase
(c) EDS analysis of Laves phase pointed by arrow 1 in Fig.2b
(d) EDS analysis of δ phase pointed by arrow 2 in Fig.2b
Fig.3  Microstructures and EDS analysis of CPF-LRF GH4169 alloy heat treated by 1020STA
(a) equiaxed crystals and annealing twins (b) precipitation of δ phase
(c) Laves phase and δ phase (d) EDS analysis of Laves phase pointed by arrow in Fig.3c
Fig.4  Microstructures of equiaxed crystals (a, c) and precipitation (b, d) of δ phase of CPF-LRF GH4169 alloy heat treated by 1050STA (a, b) and 1080STA (c, d)
Fig.5  Microhardness of CPF-LRF GH4169 alloy after 980STA, 1020STA, 1050STA and 1080STA heat treatments
Heat treatment σs / MPa σb / MPa Elongation / %
980STA 1120.1 1361.3 10.1
1020STA 1301.6 1523.4 16.4
1050STA 1235.4 1447.6 19.8
1080STA 1112.2 1362.1 12.4
Wrought standard (Q/3B 548-1996) 1100.0 1340.0 12.0
Table 3  Tensile properties of GH4169 alloy under different heat treatments
Fig.6  Tensile fracture morphologies of CPF-LRF GH4169 alloy after different heat treatments
(a) 980STA (b) 1020STA (c) 1050STA (d) 1080STA
[1] Mei Y P, Liu Y C, Liu C X, et al.Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. J. Alloys Compd., 2015, 649: 949
[2] Chang L T, Sun W R, Cui Y Y, et al.Effect of heat treatment on microstructure and mechanical properties of the hot-isostatic-pressed Inconel 718 powder compact[J]. J. Alloys Compd., 2014, 590: 227
[3] Lambarrin J, Leunda J, Navas V G, et al.Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components[J]. Opt. Laser. Eng., 2013, 51: 813
[4] Zhang Q L, Yao J H, Mazumder J.Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy[J]. J. Iron Steel Res. Int., 2011, 18: 73
[5] Chang L T, Sun W R, Cu Y Y, et al.Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact[J]. Mater. Sci. Eng., 2014, A599: 186
[6] Mei Y P, Liu Y C, Liu C X, et al.Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. J. Alloys Compd., 2015, 649: 949
[7] Rao G A, Srinivas M, Sarma D S.Effect of thermomechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2004, A383: 201
[8] Wang Y D, Tang H B, Fang Y L, et al.Effect of heat treatment on microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A528: 474
[9] Zhang Q, Chen J, Lin X, et al.Grain morphology control and texture characterization of laser solid Formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy[J]. J. Mater. Process. Technol., 2016, 238: 202
[10] Wang Y D, Tang H B, Fang Y L, et al.Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A527: 4804
[11] Zhu Y Y, Liu D, Tian X J, et al.Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Mater. Des., 2014, 56: 445
[12] Zhu Y Y, Li J, Tian X J, et al.Microstructure and mechanical properties of hybrid fabricated Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser additive manufacturing[J]. Mater. Sci. Eng., 2014, A607: 427
[13] Liu C M, Wang H M, Tian X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Mater. Sci. Eng., 2013, A586: 323
[14] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[15] Liu F C, Lin X, Yang G L, et al.Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Opt. Laser Technol., 2011, 43: 208
[16] Liu F C, Lin X, Zhao W W, et al.Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy[J]. Rare Met. Mater. Eng., 2010, 39: 1519
[17] Liu F C, Lin X, Yang G L, et al.Microstructures and mechanical properties of laser solid formed nickle base superalloy Inconel 718 prepared in different atmospheres[J]. Acta Metall. Sin., 2010, 46: 1047
[17] (刘奋成, 林鑫, 杨高林等. 不同气氛激光立体成形镍基高温合金Inconel 718的显微组织和力学性能[J]. 金属学报, 2010, 46: 1047)
[18] Zhao W W, Lin X, Liu F C, et al.Effect of heat treatment on microstructure and mechanical properties of laser solid forming Inconel 718 superalloy[J]. Chin. J. Lasers, 2009, 36: 3220
[18] (赵卫卫, 林鑫, 刘奋成等. 热处理对激光立体成形Inconel 718高温合金组织和力学性能的影响[J]. 中国激光, 2009, 36: 3220)
[19] Zhao X M, Chen J, Lin X, et al.Study on microstructure and mechanical properties of laser rapid forming Inconel 718[J]. Mater. Sci. Eng., 2008, A478: 119
[20] Song K, Yu K, Lin X, et al.Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718[J]. Acta Metall. Sin., 2015, 51: 935
[20] (宋衎, 喻凯, 林鑫等. 热处理态激光立体成形Inconel 718高温合金的组织及力学性能[J]. 金属学报, 2015, 51: 935)
[21] Zhang D Y, Niu W, Cao X Y, et al.Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy[J]. Mater. Sci. Eng., 2015, A644: 32
[22] Wang Z M, Guan K, Gao M, et al.The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. J. Alloys Compd., 2012, 513: 518
[23] Xi M Z, Liu J B, Zhao Y, et al.Microstructures of heat treatment and properties of TA15 titanium alloy formed by technology of laser rapid forming combined with continuous point forging[J]. Chin. J. Lasers, 2016, 43: 203001
[23] (席明哲, 刘静波, 赵毅等. 连续点式锻压激光快速成形TA15钛合金热处理组织与性能[J]. 中国激光, 2016, 43: 203001)
[24] Rao G A, Kumar M, Srinivas M, et al.Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718[J]. Mater. Sci. Eng., 2003, A355: 114
[25] Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds[J]. J. Mater. Process. Technol., 2005, 167: 73
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!