Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1235-1241    DOI: 10.11900/0412.1961.2015.00375
Current Issue | Archive | Adv Search |
INFLUENCE OF ELECTRIC FIELD TREATMENT ON PRECIPITATION BEHAVIOR OF d PHASE IN GH4169 SUPERALLOY
Lei WANG1(),Jinlan AN1,Yang LIU1,Xiu SONG1,Guohua XU2,Guangpu ZHAO2
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University,
Shenyang 110819
2 High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

Lei WANG,Jinlan AN,Yang LIU,Xiu SONG,Guohua XU,Guangpu ZHAO. INFLUENCE OF ELECTRIC FIELD TREATMENT ON PRECIPITATION BEHAVIOR OF d PHASE IN GH4169 SUPERALLOY. Acta Metall Sin, 2015, 51(10): 1235-1241.

Download:  HTML  PDF(6071KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH4169 alloy is widely used to make aero engine, gas turbine as it is one of the most important superalloy. γ’' phase is the main strengthen phase, however, the metastable γ’' phase will transform to stable d phase during aging or servicing for certain time. d phase is significance in the alloy, its precipitating and distributing behavior have an effect on the properties of the alloy. In recent year, researchers pay more attention on electric field treatment (EFT), this is because of high energy density, accurate controlling, clean and safety. EFT is one of the most important energy field except temperature field and stress field. In this work, EFT was performed on GH4169 superalloy to investigate the influence of EFT on precipitation behavior of d phase in the alloy, and the mechanism of the effect of EFT on the phase transformation was also discussed. The results show that d phases precipitate on the grain boundaries after EFT with 8 kV/cm at 850 ℃ for 15 min, and large amounts of γ’' phases precipitate inside the grains. With the increasing of EFT time, both the volume fraction and the size of d phase increase, at the same time the size of γ’' phase increases. The volume fraction of d phase is less and the size of d phase is smaller, and the volume fraction of γ’' phase is higher by EFT, compared with that by aging treatment (AT) for the same time. In addition, the Nb content on the grain boundary decreases and both Fe and Cr content increase, meanwhile the lattice parameters of c decreases and a, b increase. The vacancy concentrations can be accelerated by EFT, so that the diffusion of Fe and Cr atoms can be promoted. Meanwhile, the Nb atoms in d phases on the grain boundaries can be displaced by Fe atoms and Cr atoms, therefore the Nb atoms are dissolved into the grain. The nucleation rate of γ’' phases increases with the increasing of vacancy concentrations. The vacancies relax coherent distortion between γ phases and γ’' phases, and suppress γ’' phases to transform to d phases. Thus the stabilization of γ’' phases is enhanced.

Key words:  GH4169 alloy      electric field treatment      d phase      γ’' phase     
Fund: Supported by High Technology Research and Development Program of China (No.2012AA03A513) and National Natural Science Foundation of China (Nos.51171039 and 51371044)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00375     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1235

Fig.1  Schematic of electric field treatment set up for GH4169 alloy
Fig.2  Morphologies of d phases in GH4169 superalloy by aging treatment (AT) (a~e) and electric field treatment (EFT) (f~j) for 15 min (a, f), 1 h (b, g), 5 h (c, h), 10 h (d, i) and 20 h (e, j) at 850 ℃ (Long arrows show d phases on the grain boundary, short arrows show d phases inside grain)
Fig.3  Morphology of d phase in GH4169 superalloy by EFT at 850 ℃ for 20 h (PFZ—precipitate free zone)
Fig.4  Variation of volume fraction of d phase in GH4169 superalloy aged at 850 ℃ for different times
Fig.5  Morphologies of γ’’ phase inside grains in GH4169 superalloy by EFT at 850 ℃ for 5 h (a), 10 h (b) and 20 h (c)
Fig.6  Morphologies of γ″ phase inside grains in GH4169 superalloy by AT at 850 ℃ for 10 h (a), EFT at 850 ℃ for 10 h (b) and 20 h (c) (Inset in Fig.6c shows the SAED pattern)
Treatment Al Ti Cr Fe Nb Ni Mo
EFT 0.65 1.57 17.87 15.37 6.38 57.10 1.06
AT 0.16 2.36 15.90 14.52 11.74 54.32 1.00
Table 1  Chemical compositions of d phase on grain boundary in GH4169 superalloy by EFT and AT at 850 ℃ for 20 h
Fig.7  TEM image of γ’’ phases in GH4169 superalloy by EFT at 850 ℃ for 20 h (a) and the HRTEM image of the regions denoted by circle in Fig.7a (b)
Treatment Time Lattice constant / nm
h a b c
AT 10 5.11 4.36 4.58
20 5.11 4.39 4.63
EFT 10 5.29 4.36 4.51
20 5.23 4.42 4.52
Table 2  The lattice constants of d phase on the grain boundary in GH4169 superalloy by EFT and AT at 850 ℃
[1] Guo J T. Materials Science and Engineering for Superalloys. Vol.3, Beijing: Science Press, 2010: IX (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: IX)
[2] Deng G J, Tu S T, Zhang X C, Wang Q Q, Qin C H. Eng Fract Mech, 2015; 134: 433
[3] Wang Y, Lin L, Shao W Z. Trans Mater Heat Treatment, 2007; 28(suppl): 176
[4] Medeiros S C, Prasad Y V R K, Frazier W G, Srinivasan R. Mater Sci Eng, 2000; A293: 198
[5] Tian S G, Wang X, Xie J, Liu C, Guo Z G, Liu J, Sun W R. Acta Metall Sin, 2013; 49: 845 (田素贵, 王 欣, 谢 君, 刘 臣, 郭忠革, 刘 姣, 孙文儒. 金属学报, 2013; 49: 845)
[6] Cai D Y, Zhang W H, Liu W C, Xiao F R, Yao M, Sun G D, Chen Z L, Wang S G. Nonferrous Met, 2003; 55(1): 4 (蔡大勇, 张伟红, 刘文昌, 肖福仁, 姚 枚, 孙贵东, 陈宗霖, 王少刚. 有色金属, 2003; 55(1): 4)
[7] Srinivasan D. Mater Sci Eng, 2004; A364: 27
[8] Azadian S, Wei L Y, Warren R. Mater Charact, 2004; 53(1): 7
[9] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281
[10] Wang Y, Zhen L, Shao W Z, Yang L, Zhang M. J Alloys Compd, 2009; 44: 341
[11] Wang Y, Shao W Z, Zhen L, Zhang B Y. Mater Sci Eng, 2011; A528: 3218
[12] Zhang H, Ying Z Y, Chang X Z. J Mater Eng, 1992; (S1): 131 (张 华, 应志毅, 常雪智. 材料工程, 1992; (S1): 131)
[13] Tang C, Du J H, Liu J H, Deng Q. J Iron Steel Res, 2013; 25(9): 38 (唐 程, 杜金辉, 刘军和, 邓 群. 钢铁研究学报, 2013; 25(9): 38)
[14] An J L, Wang L, Liu Y, Xu G H, Zhao G P. Acta Metall Sin, 2015; 51: 835 (安金岚, 王 磊, 刘 杨, 胥国华, 赵光普. 金属学报, 2015; 51: 835)
[15] Pouranvari M, Ekrami A, Kokabi A H. Mater Des, 2013; 50: 694
[16] Conrad H, Yang D. Acta Mater, 2002; 50: 2851
[17] Yang D, Conrad H. Intermetallics, 2001; 9: 943
[18] Liu Y, Wang L, Qiao X Y, Wang Y Q. Rare Met Mater Eng, 2008; 37(1): 66 (刘 杨, 王 磊, 乔雪璎, 王延庆. 稀有金属材料与工程, 2008; 37(1): 66)
[19] Liu Y, Wang L, Ding Y, Cui T, Wang Y Q. China J Nonferrous Met, 2006; 16: 1749 (刘 杨, 王 磊, 丁 扬, 崔 彤, 王延庆. 中国有色金属学报, 2006; 16: 1749)
[20] Zhang X Y, Wang L, Wang Y, Liu Y, Lv X D, Chao Y S. J Iron Steel Res, 2011; 23(Suppl 2): 146 (张新宇, 王 磊, 王 尧, 刘 杨, 吕旭东, 晁月盛. 钢铁研究学报, 2011; 23(增刊2): 146)
[21] Wang Y. PhD Dissertation, Northeastern University, Shenyang, 2013 (王 尧. 东北大学博士学位论文, 沈阳, 2013)
[22] Liu W, Liang K M, Zheng Y K. J Mater Sci, 1998; 33: 1043
[23] Li S Q, Zhuang J Y, Yang J Y, Deng Q, Du J H, Xie X S, Li B, Xu Z C, Cao Z, Su Z Q, Jiang C Z. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 545
[24] Dong J X, Xie X S, Xu Z C, Zhang S H, Chen M Z, Radavich J F. In: Loria E A ed., Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, PA: TMS, 1994: 649
[25] Dean J A. Lange's Chemistry Handbook Version 15th. New York: McGraw-Hill Professional, 1998: 430
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC[J]. 金属学报, 2023, 59(11): 1475-1486.
[3] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[4] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[5] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
[6] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[7] ZHANG Haiyan,ZHANG Shihong, CHENG Ming. EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE[J]. 金属学报, 2013, 29(4): 483-488.
[8] ZHANG Maicang, CAO Guoxin, DONG Jianxin, ZHENG Lei, YAO Zhihao. INVESTIGATIONS ON DISSOLUTION MECHANISM OF LAVES PHASE IN GH4169 ALLOY INGOT BASED ON CLASSICAL DYNAMICAL MODEL[J]. 金属学报, 2013, 49(3): 372-378.
[9] LIU Yang WANG Lei HE Sisi FENG Fei LV Xudong ZHANG Beijiang. EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2012, 48(1): 49-55.
No Suggested Reading articles found!