Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (11): 1475-1486    DOI: 10.11900/0412.1961.2022.00204
Current Issue | Archive | Adv Search |
Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC
ZHANG Weidong1, CUI Yu2(), LIU Li1(), WANG Wenquan1, LIU Rui1, LI Rui1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC. Acta Metall Sin, 2023, 59(11): 1475-1486.

Download:  HTML  PDF(5135KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of engine materials of airplanes working in marine environments is accelerated by the synergistic effects of NaCl particles and water vapor at high temperatures. This work examined the corrosion behavior of GH4169 alloy with a NaCl solution spraying at 600oC using an oxidation kinetics test and micro characterization technology in the aspects of corrosion kinetics, corrosion layer phase composition, and microstructure. The weight gain of the GH4169 alloy corroded in the NaCl solution spraying environment was much lower than that in solid NaCl + wet O2 after 20 h corrosion at 600oC. The corrosion products of the GH4169 alloy in the NaCl solution spray environment were less complex than those in the solid NaCl + wet O2 environment, but they were denser. In addition, Cl was concentrated in the inner layer of the corrosion products and accelerated the corrosion of GH4169 alloy via an “active oxidation” mechanism at the initial stage. When NaCl deposition was increased, the corrosion mechanism of GH4169 alloy changed gradually to Cl-induced “active oxidation.” The sensitivity of GH4169 alloy in the NaCl solution spray environment at 600oC was analyzed. Overall, the sensitivity of elements in GH4169 alloy to chlorine activated corrosion was Ti > Al > Nb, Cr > Fe > Mo, Ni, whereas the sensitivity of the oxides was TiO2 > MoO2 > Cr2O3(Nb2O5) > Fe2O3 > Al2O3 > NiO.

Key words:  GH4169 alloy      NaCl solution spray      sensitivity of alloy element     
Received:  29 April 2022     
ZTFLH:  TG174  
Fund: Key Projects of Enterprise Innovation Joint Fund of National Natural Science Fundation of China(U20B2026)
Corresponding Authors:  LIU Li, professor, Tel: 15904072057, E-mail: liuli@mail.neu.edu.cn;
CUI Yu, associate researcher, Tel: 15004059681, E-mail: ycui@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00204     OR     https://www.ams.org.cn/EN/Y2023/V59/I11/1475

Fig.1  Schematics of NaCl solution spray environment (a) and the furnace system with the traditional solid NaCl in wet O2 environment (b)
Fig.2  Mass gain curves of GH4169 exposed in pure O2, wet O2, solid NaCl in wet O2, and NaCl solution sprayenvironments at 600oC for 20 h
Fig.3  SEM images of GH4169 alloy exposed in solid NaCl in wet O2 (a) and NaCl solution spray (b) environments at 600oC for 5 min
Fig.4  SEM images of GH4169 alloy exposed in pure O2 (a), wet O2 (b), solid NaCl in wet O2 (c), and NaCl solution spray (d) environments at 600oC for 20 h (Insets show the corresponding high magnified images)
PointCrNiNaAlTiFeNbO
135.542.13--0.020.050.0362.23
229.831.35-0.030.031.030.0667.67
33.373.100.070.020.0459.930.1033.37
42.311.4222.250.020.951.0723.1449.91
515.6115.581.820.730.6510.532.7152.37
Table 1  EDS results of the points in Fig.4
Fig.5  Cross-section SEM images of GH4169 alloy exposed in pure O2 (a), wet O2 (b), solid NaCl in wet O2 (c), and NaCl solution spray (d) environments at 600oC for 20 h
Fig.6  XRD spectra of GH4169 alloy exposed in pure O2, wet O2, solid NaCl in wet O2, and NaCl solution spray environments at 600oC for 20 h
Fig.7  EPMA maps of the elemental distribution of the cross-section of GH4169 alloy exposed in solid NaCl in wet O2 (a) and NaCl solution spray (b) environments at 600oC for 20 h
Fig.8  EPMA maps of the elemental distribution of the cross-section of GH4169 alloy exposed in NaCl solution spray environment at 600oC for 100 h
Fig.9  TEM image and corresponding SAED patterns of the corrosion scale of GH4169 alloy exposed in NaCl solution spray at 600oC for 20 h (a), and Cl element distribution along the EDS-line in Fig.9a (b)
Fig.10  TEM image of internal corrosion scale of GH4169 alloy exposed in solid NaCl in wet O2 environment at 600oC for 20 h (a), and corresponding high magnified images of areas 1 (b) and 2 (c) in Fig.10a, respectively, and STEM-EDS result of Fig.10b (d)
ReactionΔG0 / (kJ·mol-1)
4NaCl (g) + O2 (g) + 2TiO2 = 2Na2TiO3 + 2Cl2 (g)-133.57
4NaCl (g) + 2H2O (g) + TiO2 = 2Na2TiO3 + 4HCl (g)-64.06
4NaCl (g) + 2Al2O3 + 2H2O (g) = 4NaAlO2 + 4HCl (g)280.4
4NaCl (g) + 2Al2O3 + O2 (g) = 4NaAlO2 + 2Cl2 (g)174.2
4NaCl (g) + 2Fe2O3 + O2 (g) = 4NaFeO2 + 2Cl2 (g)4
4NaCl (g) + 2Fe2O3 + 2H2O (g) = 4NaFeO2 + 4HCl (g)3.8
4NaCl (g) + Cr2O3 + 2H2O (g) + 3/2O2 (g) = 2Na2CrO4 + 4HCl (g)-54.5
4NaCl (g) + Cr2O3 + 5/2O2 (g) = 2Na2CrO4 + 2Cl2 (g)-54.4
4NaCl (g) + 4NiO + O2 + 2H2O = 4NaNiO2 + 4HCl (g)-
4NaCl (g) + 2Nb2O5 + O2 (g) = 4NaNbO3 + 2Cl2 (g)-
4NaCl (g) + 2H2O (g) + 2MoO2 + O2 (g) = 2Na2MoO4 + 4HCl (g)-115.6
Table 2  Standard Gibbs free energies (ΔG0) of reactions at 600oC (calculated by HSC Chemistry 5.11 database)
Fig.11  Equilibrium diagram of M-Cl-O system at 600oC with lgpO2and lgpCl as coordinates (calculated by HSC Chemistry 5.11 database. pO2—oxygen partial pressure, pCl—chlorine partial pressure)
1 Wang C, Jiang F, Wang F. Corrosion inhibition of 304 stainless steel by nano-sized Ti/silicone coatings in an environment containing NaCl and water vapor at 400-600oC [J]. Oxid. Met., 2004, 62: 1
doi: 10.1023/B:OXID.0000038782.77162.5b
2 Shu Y H, Wang F H, Wu W T. Synergestic effect of NaCl and water vapor on the corrosion of Ti60 alloy at 500-700oC [J]. Oxid. Met., 1999, 52: 463
doi: 10.1023/A:1018864216554
3 Shu Y H, Wang F H, Wu W T. Synergistic effect of NaCl and water vapor on the corrosion of 1Cr-11Ni-2W-2Mo-V steel at 500-700oC [J]. Oxid. Met., 1999, 51: 97
doi: 10.1023/A:1018854202982
4 Shu Y H, Wang F H, Wu W T. Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor [J]. Oxid. Met., 2000, 54: 457
doi: 10.1023/A:1004690518225
5 Wang F H, Geng S J, Zhu S L. Corrosion behavior of a sputtered K38G nanocrystalline coating with a solid NaCl deposit in wet oxygen at 600 to 700oC [J]. Oxid. Met., 2002, 58: 185
doi: 10.1023/A:1016072726338
6 Wang F, Shu Y. Influence of Cr content on the corrosion of Fe-Cr alloys: The synergistic effect of NaCl and water vapor [J]. Oxid. Met., 2003, 59: 201
doi: 10.1023/A:1023083309041
7 Grabke H J, Reese E, Spiegel M. The effects of chlorides, hydrogen chloride, and sulfur dioxide in the oxidation of steels below deposits [J]. Corros. Sci., 1995, 37: 1023
doi: 10.1016/0010-938X(95)00011-8
8 Liu L, Li Y, Zeng C L, et al. Electrochemical impedance spectroscopy (EIS) studies of the corrosion of pure Fe and Cr at 600oC under solid NaCl deposit in water vapor [J]. Electrochim. Acta, 2006, 51: 4736
doi: 10.1016/j.electacta.2006.01.033
9 Tang Y B, Liu L, Li Y, et al. The electrochemical corrosion mechanisms of pure Cr with NaCl deposit in water vapor at 600oC [J]. J. Electrochem. Soc., 2011, 158: C237
doi: 10.1149/1.3596167
10 Fan L, Liu L, Cao M, et al. Corrosion behavior of pure Ti under a solid NaCl deposit in a wet oxygen flow at 600oC [J]. Metals, 2016, 6: 72
doi: 10.3390/met6040072
11 Fan L, Liu L, Yu Z F, et al. Corrosion behavior of Ti60 alloy under a solid NaCl deposit in wet oxygen flow at 600oC [J]. Sci. Rep, 2016, 6: 29019
doi: 10.1038/srep29019
12 Ciszak C, Abdallah I, Popa I, et al., Degradation mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si alloy exposed to solid NaCl deposit at high temperature [J]. Corros. Sci., 2020, 172: 108611
doi: 10.1016/j.corsci.2020.108611
13 Folkeson N, Jonsson T, Halvarsson M, et al., The influence of small amounts of KCl(s) on the high temperature corrosion of a Fe-2.25Cr-1Mo steel at 400 and 500oC [J]. Mater. Corros., 2011, 62: 606
14 Cao M, Liu L, Yu Z F, et al. Studies on the corrosion behavior of Fe-20Cr alloy in NaCl solution spray at 600oC [J]. Corros. Sci., 2018, 133: 165
doi: 10.1016/j.corsci.2018.01.033
15 Li R, Cui Y, Liu L, et al. Corrosion behavior of Ti60 alloy in fog of NaCl solution at 600oC [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 595
李 蕊, 崔 宇, 刘 莉 等. NaCl盐雾环境下Ti60合金的中温腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 595
16 Mahobia G S, Paulose N, Singh V. Hot corrosion behavior of superalloy IN718 at 550 and 650oC [J]. J. Mater. Eng. Perform., 2013, 22: 2418
doi: 10.1007/s11665-013-0532-0
17 Pradhan D G, Mahobia G S, Chattopadhyay K, et al. Salt induced corrosion behaviour of superalloy IN718 [J]. Mater. Today Proc., 2018, 5: 7047
18 Shen M L, Zhu S L, Wang F H. Cyclic oxidation behavior of glass-ceramic composite coatings on superalloy K38G at 1100oC [J]. Thin Solid Films, 2011, 519: 4884
doi: 10.1016/j.tsf.2011.01.047
19 Yu Z F, Liu L, Liu R, et al. Corrosion behavior of GH4169 alloy under alternating oxidation at 900oC and solution immersion [J]. Materials (Basel), 2019, 12: 1503
doi: 10.3390/ma12091503
20 Pradhan D, Mahobia G S, Chattopadhyay K, et al. Severe hot corrosion of the superalloy IN718 in mixed salts of Na2SO4 and V2O5 at 700oC [J]. J. Mater. Eng. Perform., 2018, 27: 4235
doi: 10.1007/s11665-018-3501-9
21 Sun W Y, Wang J L, Yang L L, et al. Studies on corrosion behavior of a single-crystal superalloy and its sputtered nanocrystalline coatings with solid NaCl deposit in O2 + 38 vol.% H2O environment at 700oC [J]. Corros. Sci., 2019, 161: 108187
doi: 10.1016/j.corsci.2019.108187
22 Xu S, Long F, Persaud S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600oC supercritical water and the effect of pre-oxidation [J]. Corros. Sci., 2020, 165: 108380
doi: 10.1016/j.corsci.2019.108380
23 Zhuang X P, Tan Y, You X G, et al. High temperature oxidation behavior and mechanism of a new Ni-Co-based superalloy [J]. Vacuum, 2021, 189: 110219
doi: 10.1016/j.vacuum.2021.110219
24 Jonsson T, Pujilaksono B, Heidari H, et al. Oxidation of Fe-10Cr in O2 and in O2 + H2O environment at 600oC: A microstructural investigation [J]. Corros. Sci., 2013, 75: 326
doi: 10.1016/j.corsci.2013.06.016
25 Juez-Lorenzo M, Kolarik V, Stamm W, et al. Oxidation of nickel-based alloys in dry and water vapour containing air [J]. Mater. High Temp., 2012, 29: 229
doi: 10.3184/096034012X13348393336892
26 Israelsson N, Hellström K, Svensson J E, et al. KCl-induced corrosion of the FeCrAl alloy Kanthal® AF at 600oC and the effect of H2O [J]. Oxid. Met., 2015, 83: 1
doi: 10.1007/s11085-014-9506-3
27 Israelsson N, Engkvist J, Hellström K, et al. KCl-induced corrosion of an FeCrAl alloy at 600oC in O2 + H2O environment: The effect of pre-oxidation [J]. Oxid. Met., 2015, 83: 29
doi: 10.1007/s11085-014-9507-2
28 Fan L. Investigation on corrosion behavior of Ti60 alloy under synergetic effect of solid NaCl deposit and water vapor at 600oC [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Scionces), 2016
范 磊. 固态NaCl和水蒸汽协同作用下Ti60合金中温腐蚀行为的研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2016
29 Wang W Q, Cui Y, Liu R, et al. Revealing internal corrosion of GH4169 with stress coupled solid NaCl deposited in a humid environment of 600oC [J]. Corros. Sci., 2022, 195: 110004
doi: 10.1016/j.corsci.2021.110004
30 Phother-Simon J, Hanif I, Liske J, et al. The influence of a KCl-rich environment on the corrosion attack of 304 L: 3D FIB/SEM and TEM investigations [J]. Corros. Sci., 2021, 183: 109315
doi: 10.1016/j.corsci.2021.109315
31 Israelsson N, Unocic K A, Hellström K, et al. Cyclic corrosion and chlorination of an FeCrAl alloy in the presence of KCl [J]. Oxid. Met., 2015, 84: 269
doi: 10.1007/s11085-015-9554-3
32 Israelsson N, Unocic K A, Hellström K, et al. A microstructural and kinetic investigation of the KCl-induced corrosion of an FeCrAl alloy at 600oC [J]. Oxid. Met., 2015, 84: 105
doi: 10.1007/s11085-015-9546-3
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[3] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[4] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
[5] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[6] Lei WANG,Jinlan AN,Yang LIU,Xiu SONG,Guohua XU,Guangpu ZHAO. INFLUENCE OF ELECTRIC FIELD TREATMENT ON PRECIPITATION BEHAVIOR OF d PHASE IN GH4169 SUPERALLOY[J]. 金属学报, 2015, 51(10): 1235-1241.
[7] ZHANG Haiyan,ZHANG Shihong, CHENG Ming. EFFECT OF δ PHASE ON THE TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY AT HIGH TEMPERATURE[J]. 金属学报, 2013, 29(4): 483-488.
[8] ZHANG Maicang, CAO Guoxin, DONG Jianxin, ZHENG Lei, YAO Zhihao. INVESTIGATIONS ON DISSOLUTION MECHANISM OF LAVES PHASE IN GH4169 ALLOY INGOT BASED ON CLASSICAL DYNAMICAL MODEL[J]. 金属学报, 2013, 49(3): 372-378.
[9] LIU Yang WANG Lei HE Sisi FENG Fei LV Xudong ZHANG Beijiang. EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2012, 48(1): 49-55.
No Suggested Reading articles found!