Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (6): 821-830    DOI: 10.11900/0412.1961.2019.00306
Current Issue | Archive | Adv Search |
Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting
GENG Yaoxiang(), FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Download:  HTML  PDF(4779KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using complex shapes and precise structural parts is becoming a strong trend in modern advanced manufacturing. However, traditional manufacturing technology hardly achieves the complex geometric parts directly. Selective laser melting (SLM) is an advanced manufacturing technology for metallic materials, enables production parts with complex geometry combined with the enhancement of design flexibility. The cooling rate of molten pool can reach 103~106 K/s during the SLM process. In this case, the solid solubility of the alloying elements in the matrix can be greatly enhanced. Aluminum alloy has been widely used in industry. At present, the strength of SLM-formed aluminum alloys is far lower than that of high-strength aluminum alloys obtained from a traditional process. It is necessary to develop high-strength aluminum alloy composition based on SLM technical characteristics. The present study is devoted to design high-strength AlSiMg1.5 aluminum alloy specifically for SLM using the local structure model based on the liquid-solid structural compatibility of the alloy and the technical characteristics of the liquid quenching in SLM. The effect of the ageing treatment on the microstructure, the hardness, and the compressive properties of the SLM-formed AlSiMg1.5 alloy was systematically studied. Almost completely dense samples were obtained by adjusting the parameters of SLM process. When the ageing temperature was 300 ℃, the super-solid solution Si precipitated and grew in the island-like Al-rich structure, and the reticular Si-rich structure decomposed and spheroidized gradually with the increases of ageing time of SLM-formed AlSiMg1.5 samples. In this case, the hardness and the strength of the samples decreased, but the elongation increased significantly. The microstructures of the SLM-formed AlSiMg1.5 samples did not change obviously when the ageing temperature was 150 ℃. But the hardness and yield strength of the samples significantly increased first and then decreased slightly. The maximum microhardness and compressive yield strength of SLM-formed AlSiMg1.5 samples aged at 150 ℃ were (169±1) HV and (453±4) MPa, respectively, and the elongation of samples exceeds 25%. In this study, a special Al91.0Si7.5Mg1.5 (mass fraction, %) aluminum alloy specifically for SLM with excellent formability and mechanical properties was designed.

Key words:  selective laser melting      composition design      AlSiMg1.5 alloy      ageing treatment      microstructure      mechanical property     
Received:  17 September 2019     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2016YFB1100103);National Natural Science Foundation of China(51801079);Natural Science Foundation for Young Scientists of Jiangsu Province(BK20180985);Natural Science Foundation for Young Scientists of Jiangsu Province(BK20180987);Natural Science Foundation in Higher Education of Jiangsu Province(18KJB430011)
Corresponding Authors:  GENG Yaoxiang     E-mail:  yaoxianggeng@163.com

Cite this article: 

GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting. Acta Metall Sin, 2020, 56(6): 821-830.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00306     OR     https://www.ams.org.cn/EN/Y2020/V56/I6/821

Fig.1  [Si-Al12] (a) and [Si-Mg8] (b) clusters in the α-(Al, Si) and Mg2Si phases, respectively
Color online
PowderSiMgFeAl
Designed chemical composition7.51.50.0Bal.
Actual chemical composition8.11.40.2Bal.
Table 1  Comparison of the designed and actual chemical compositions of the AlSiMg powders
Fig.2  SEM image (a) and size distribution (b) of AlSiMg1.5 powders (Dv is the measured particle diameter, and 10, 50 and 90 are the volume percentages of particles with a diameter smaller than the Dv values)
Fig.3  Photography of SLM-formed AlSiMg1.5 samples (SLM—selective laser melting)
Fig.4  Longitudinal section OM images of the AlSiMg1.5 samples manufactured at scanning speeds of 800 mm/s (a) and 1200 mm/s (b) with laser power of 300 W
Fig.5  Evolution of the porosity of the SLM-formed AlSiMg1.5 samples with the laser energy and the scanning speed at a laser power of 200 and 300 W
Fig.6  Longitudinal section SEM image of SLM-formed AlSiMg1.5 sample
Fig.7  TEM bright field image (a) of SLM-formed AlSiMg1.5 sample and corresponding EDS mapping of Al (b), Si (c) and Mg (d)
Color online
Fig.8  SEM images of SLM-formed AlSiMg1.5 samples after ageing at 300 ℃ for 0 h (a), 0.5 h (b), 1 h (c), 1.5 h (d), 2 h (e) and 3 h (f)
Fig.9  SEM images of SLM-formed AlSiMg1.5 samples after ageing at 150 ℃ for 18 h (a) and 48 h (b)
Fig.10  XRD spectra of the SLM-formed AlSiMg1.5 samples with different ageing conditions
Fig.11  Evolution of the Vickers hardness of the SLM-formed AlSiMg1.5 samples after ageing at 150 and 300 ℃ for different time
Fig.12  Compressive stress-strain curves (a) and mecha-nical properties (b) of SLM-formed AlSiMg1.5 samples with different ageing conditions (Inset in Fig.12a shows the photography of SLM-formed AlSiMg1.5 samples before and after com-pression)
[1] Wang H Z, Leung D Y C, Leung M K H, et al. A review on hydrogen production using aluminum and aluminum alloys [J]. Renewable Sustainable Energy Rev., 2009, 13: 845
[2] Valiev R Z, Murashkin M Y, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity [J]. Scr. Mater., 2014, 76: 13
doi: 10.1016/j.scriptamat.2013.12.002
[3] Li L, Xia C D, Song Y B, et al. Application status and outlook of aluminum alloys in new energy vehicles [J]. Light Alloy Fab. Technol., 2017, 45(9): 18
李 龙, 夏承东, 宋友宝等. 铝合金在新能源汽车工业的应用现状及展望 [J]. 轻合金加工技术, 2017, 45(9): 18
[4] Jia Y J, Yang Y J, Yuan H M. Application and development of aluminum alloy conductor in China [J]. Nonferrous Met. Process., 2017, 46(3): 9
贾艳军, 杨亚军, 袁红梅. 铝合金导线在我国的应用及发展 [J]. 有色金属加工, 2017, 46(3): 9
[5] Wang R B. Study on defects analysis and heat treatment of cast aluminum alloys [J]. Nonferrous Met. Process., 2008, 37(5): 10
王荣滨. 铸造铝合金缺陷分析与热处理工艺研究 [J]. 有色金属加工, 2008, 37(5): 10
[6] An Z Y, Wan L, Huang Z Y, et al. Defects analysis and countermeasures of die-casting aluminum alloy gear-box [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 509
安肇勇, 万 里, 黄志垣等. 变速箱侧盖压铸成形的缺陷分析及对策 [J]. 特种铸造及有色合金, 2015, 35: 509
[7] Li X Y, Wang D C, Liu F, et al. Visioning-future of advanced manufacture technology & equipment-present situation & tendency of advanced forming technique & equipment [J]. J. Mech. Eng., 2010, 46(17): 100
李新亚, 王德成, 刘 丰等. 先进成形技术与装备发展道路刍议-先进成形技术与装备发展现状与趋势 [J]. 机械工程学报, 2010, 46(17): 100
[8] Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting [J]. Chin. J. Lasers, 2011, 38: 0601007
杨永强, 王 迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展 [J]. 中国激光, 2011, 38: 0601007
[9] Zhang C Y, Ren Y P, Chen X S. The development situation of selective laser melting metal powder based on 3D printing [J]. Appl. Mech. Mater., 2014, 518: 12
doi: 10.4028/www.scientific.net/AMM.518
[10] Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J]. Mater. Des., 2012, 34: 159
[11] Fiocchi J, Tuissi A, Bassani P, et al. Low temperature annealing dedicated to AlSi10Mg selective laser melting products [J]. J. Alloys Compd., 2017, 695: 3402
[12] Rao H, Giet S, Yang K, et al. The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting [J]. Mater. Des., 2016, 109: 334
[13] Wei P, Wei Z Y, Chen Z, et al. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior [J]. Appl. Surf. Sci., 2017, 408: 38
[14] Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
[15] Wang X J, Zhang L C, Fang M H, et al. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy [J]. Mater. Sci. Eng., 2014, A597: 370
[16] Reschetnik W, Brüggemann J P, Aydinöz M E, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy [J]. Procedia Struct. Integr., 2016, 2: 3040
[17] Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
[18] Sing S L, An J, Yeong W Y, et al. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. J. Orthop. Res., 2016, 34: 369
[19] Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2014, A590: 153
[20] Jahn M, Luttmann A, Schmidt A, et al. Finite element methods for problems with solid-liquid-solid phase transitions and free melt surface [J]. Proc. Appl. Math. Mech., 2012, 12: 403
doi: 10.1002/pamm.201210190
[21] Criales L E, Arısoy Y M, Özel T. Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625 [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 2653
[22] Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40D: R273
[23] Geng Y X, Wang Y M, Wang Z R, et al. Formation and structure-property correlation of new bulk Fe-B-Si-Hf metallic glasses [J]. Mater. Des., 2016, 106: 69
[24] Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459
耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459
[25] Ma Y P, Dong D D, Dong C, et al. Composition formulas of binary eutectics [J]. Sci. Rep., 2015, 5: 17880
[26] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[27] Geng Y X, Zhang Z J, Wang Y M, et al. Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys [J]. Acta Metall. Sin., 2017, 53: 369
耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联 [J]. 金属学报, 2017, 53: 369
[28] Geng Y X, Lin X, Qiang J B, et al. Dual-cluster characteristic and composition optimization of finemet soft magnetic nanocrystalline alloys [J]. Acta Metall. Sin., 2017, 53: 833
耿遥祥, 林 鑫, 羌建兵等. Finemet型纳米晶软磁合金的双团簇特征与成分优化 [J]. 金属学报, 2017, 53: 833
[29] Geng Y X, Ding H Y, Wang D P, et al. Formation and structural evolution of Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 nanocrystalline alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 313
[30] Tang P J, He X L, Yang B, et al. Microstructure and properties of AlSi10Mg powder for selective laser melting [J]. J. Aeronaut. Mater., 2018, 38: 47
唐鹏钧, 何晓磊, 杨 斌等. 激光选区熔化用AlSi10Mg粉末显微组织与性能 [J]. 航空材料学报, 2018, 38: 47
[31] Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder [J]. Int. J. Mach. Tools Manuf., 2015, 88: 95
[32] Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2016, A663: 116
[33] Marola S, Manfredi D, Fiore G, et al. A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy [J]. J. Alloys Compd., 2018, 742: 271
[34] Iturrioz A, Gil E, Petite M M, et al. Selective laser melting of AlSi10Mg alloy: Influence of heat treatment condition on mechanical properties and microstructure [J]. Weld. World, 2018, 62: 885
doi: 10.1007/s40194-018-0592-8
[35] Fousová M, Dvorský D, Michalcová A, et al. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures [J]. Mater. Charact., 2018, 137: 119
doi: 10.1016/j.matchar.2018.01.028
[36] Wang M, Song B, Wei Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy [J]. Mater. Sci. Eng., 2019, A739: 463
[37] Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[8] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[13] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
No Suggested Reading articles found!