Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (8): 987-996    DOI: 10.11900/0412.1961.2019.00013
Current Issue | Archive | Adv Search |
Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy
Jinyao MA1,Jin WANG1,Yunsong ZHAO3,Jian ZHANG3,Yuefei ZHANG1(),Jixue LI2,Ze ZHANG2
1. Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
2. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Download:  HTML  PDF(26817KB) 
Export:  BibTeX | EndNote (RIS)      

Single-crystal superalloy is the key material of turbine blade and hot end parts in aerospace field. The second generation nickel-based single crystal superalloy has been widely used because of its low cost and excellent high temperature properties. At present, the research on microstructure of superalloys at high temperature mainly depends on SEM and TEM observation after heating and loading experiment. However, such kind of work lacks real-time characterization capabilities. Carrying out in situ experiments has an important significance for understanding the real time deformation behavior and microstructure evolution of superalloys. Therefore, the development of an in situ high temperature (above 1000 ℃) mechanical testing equipment for SEM faces huge challenges. In this work, high temperature tensile experiment at 1150 ℃ of a second generation single crystal nickel-based superalloy were carried out by means of a self-developed in situ heating tensile platform which can used in SEM. A high quality experimental data and serial SEM images were obtained in the course of tensile testing at 1150 ℃. The analysis of force-displacement curve shows that the yield strength and fracture strength of the specimen are 580 and 620 MPa, respectively. The sequential SEM images during this research confirm that there is no obvious shape and size change for γ and γ′ during the elastic deformation, and microstructure changing during plastic stage is mainly due to γ phase widening which is parallel to the stress axis. The results show that the original micro-voids of samples are the weakness in high temperature tensile test at 1150 ℃, the fracture direction is almost perpendicular to the stress axis, the crack propagated by passing the γ′ phase and through in the γ phase, and ultimately, temperature and stress induced adjacent holes connection leading to the sample fracture.

Key words:  nickel-based single crystal superalloy      in situ SEM      high temperature tensile      microstructure      crack     
Received:  16 January 2019     
ZTFLH:  TG132.3  
Fund: Supported by Foundation:National Key Scientific Instrument and Equipment Development Project(No.11327901)
Corresponding Authors:  Yuefei ZHANG     E-mail:

Cite this article: 

Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy. Acta Metall Sin, 2019, 55(8): 987-996.

URL:     OR

Fig.1  Dimension of in situ SEM heating tensile specimen (unit: mm)
Fig.2  Heating and tensile platform combined with SEM (a) and schematic of heating tensile stage (b)
Fig.3  Over field image of stretch gauge segment (a), composed of γ/γ' microstructure (b), micro pores and small amounts of eutectic structure and inclusion shedding caused holes (c), EDS surface distribution of the rectangular area in Fig.3b (d) (σ—relative standard deviation, w—mass fraction)
Fig.4  Temperature vs voltage curves at samples, force and displacement sensors (Inset shows the local magnification of curves)
Fig.5  Microstructure of nickel-based single crystal superalloy during heating process at 750 ℃ (a), 950 ℃ (b), 1050 ℃ (c), 1150 ℃ (d) and CCD images of in situ tensile stage (e~h) separately corresponding to Figs.5a~d
Fig.6  In situ tensile force-displacement curve of nickel-based single crystal superalloy sample at 1150 ℃
Fig.7  In situ observation of micro hole initiation and sample deformation process under different loading conditions
Fig.8  Evolution process of micro hole on sample surface during tensile yield stage at 1150 ℃ and 620 MPa
Fig.9  SEM images of microstructure at about 500 μm away from fracture surface (a) and near fracture location (b) of nickel-based single crystal superalloy
Fig.10  Crack propagation of nickel-based single crystal superalloy at 600 MPa (a), morphology at 580 MPa corresponding to region I (b), carbides in porous cavities in region II (c), morphology evolution of Fig.10a at 530 MPa (d), and crack propagation between micropores at 500 MPa at different magnification (e, f)
Fig.11  Fractograph of the specimen after high temperature tension at 1150 ℃ (a), regions A and B corresponding to crack source and crack propagation zone respectively, and boxes 1 and 2 in area B showing the microspores (b), and dimples and cleavage plane characteristics of areas I (c) and II (d) on cross section
[1] Guo J T. Materials Science and Engineering for Superalloys (Book 1) [M]. Beijing: Science Press, 2008: 182
[1] (郭建亭. 高温合金材料学(上册) [M]. 北京: 科学出版社, 2008: 182)
[2] Chen R Z. Development status of single crystal superalloys [J]. J. Mater. Eng., 1995, (8): 3
[2] (陈荣章. 单晶高温合金发展现状 [J]. 材料工程, 1995, (8): 3)
[3] Yu J, Li J R, Shi Z X, et al. Tensile behavior and deformation mechanism of single crystal superalloy DD6 at 760 ℃ and 1070 ℃ [J]. J. Aeronaut. Mater., 2015, 35(5): 13
[3] (喻 健, 李嘉荣, 史振学等. DD6单晶高温合金760 ℃和1070 ℃拉伸行为与变形机制 [J]. 航空材料学报, 2015, 35(5): 13)
[4] Li J R, Jin H P, Liu S. Stress rupture properties and microstructures of the second generation single crystal superalloy DD6 after long term aging at 980 ℃ [J]. Rare Met. Mater. Eng., 2007, 36: 1784
[5] Roebuck B, Cox D, Reed R. The temperature dependence of γ′ volume fraction in a Ni-based single crystal superalloy from resistivity measurements [J]. Scr. Mater., 2001, 44: 917
[6] Tang Y, Ming H, Xiong J, et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta Mater., 2017, 126: 336
[7] Al-Jarba K A, Fuchs G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2004, A373: 255
[8] Li T R, Liu G H, Xu M, et al. Microstructures and high temperature tensile properties of Ti-43Al-4Nb-1.5Mo alloy in the canned forging and heat treatment process [J]. Acta Metall. Sin., 2017, 53: 1055
[8] (李天瑞, 刘国怀, 徐 莽等. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能 [J]. 金属学报, 2017, 53: 1055)
[9] Zhang S C, Li X D, Yu H C, et al. Low cycle fatigue of single crystal nickel-based superalloy DD6 at 1100 ℃ [J]. J. Aeronaut. Mater., 2018, 38(1): 95
[9] (张仕朝, 李旭东, 于慧臣等. DD6合金1100℃低周疲劳行为 [J]. 航空材料学报, 2018, 38(1): 95)
[10] Baik S I, Rawlings M J S, Dunand D C. Effect of hafnium micro-addition on precipitate microstructure and creep properties of a Fe-Ni-Al-Cr-Ti ferritic superalloy [J]. Acta Mater., 2018, 153: 126.
[11] Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ' microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46: 897
[11] (陈晶阳, 赵 宾, 冯 强等. Ru和Cr对镍基单晶高温合金γ/γ'热处理组织演变的影响 [J]. 金属学报, 2010, 46: 897)
[12] Nganbe M, Heilmaier M. Modelling of particle strengthening in the γ' and oxide dispersion strengthened nickel-base superalloy PM3030 [J]. Mater. Sci. Eng., 2004, A387-389: 609
[13] Wang K G, Li J R, Liu S Z, et al. Study on creep properties of single crystal superalloy DD6 at 760 ℃ [J]. J. Mater. Eng., 2004, (5): 7
[13] (王开国, 李嘉荣, 刘世忠等. DD6单晶高温合金760 ℃的蠕变性能研究 [J]. 材料工程, 2004, (5): 7)
[14] Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction [J]. Acta Mater., 2004, 52: 3737
[15] Shi Z X, Li J R, Liu S Z, et al. Transverse tensile properties and fracture behaviour of DD6 single crystal superalloy [J]. J. Aeronaut. Mater., 2009, 29(2): 101
[15] (史振学, 李嘉荣, 刘世忠等. DD6单晶高温合金横向拉伸性能及其断裂行为 [J]. 航空材料学报, 2009, 29(2): 101)
[16] Shi Z X, Liu S Z, Xiong J C, et al. Microstructure evolution behavior of DD6 single crystal superalloy at different using temperatures [J]. Chin. J. Nonferrous Met., 2015, 25: 3077
[16] (史振学, 刘世忠, 熊继春等. 不同使用温度下DD6单晶高温合金的组织演变行为 [J]. 中国有色金属学报, 2015, 25: 3077)
[17] Wang J J, Guo W G, Li P H, et al. Dynamic tensile properties of a single crystal nickel-base superalloy at high temperatures measured with an improved SHTB technique [J]. Mater. Sci. Eng., 2016, A670: 1
[18] Zhao J Q, Li J R, Liu S Z, et al. Effects of low angle grain boundaries on stress rupture properties of single crystal superalloy DD6 [J]. J. Aeronaut. Mater., 2007, 27(6): 6
[18] (赵金乾, 李嘉荣, 刘世忠等. 小角度晶界对单晶高温合金DD6持久性能的影响 [J]. 航空材料学报, 2007, 27(6): 6)
[19] Qin J C, Cui R J, Huang Z H, et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J]. J. Aeronaut. Mater., 2017, 37(3): 24
[19] (秦健朝, 崔仁杰, 黄朝晖等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24)
[20] Hemmersmeier U, Feller-Kniepmeier M. Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4 [J]. Mater. Sci. Eng., 1998, A248: 87
[21] Zhang S M, Yu J G, Huang Z Y, et al. Directional migration behavior of alloying elements in the rafting process of the single crystal superalloy DD6 [J]. Rare Met. Mater. Eng., 2016, 45: 1147
[22] Wheeler J M, Armstrong D E J, Heinz W, et al. High temperature nanoindentation: The state of the art and future challenges [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 354
[23] Zhang W J, Song X Y, Hui S X, et al. In-situ SEM observations of fracture behavior of BT25y alloy during tensile process at different temperature [J]. Mater. Des., 2017, 116: 638
[24] Wang J, Zhang Y F, Ma J Y, et al. Microcrack nucleation and propagation investigation of Inconel 740H alloy under in situ high temperature tensile test [J]. Acta Metall. Sin., 2017, 53: 1627
[24] (王 晋, 张跃飞, 马晋遥等. Inconel740H合金原位高温拉伸微裂纹萌生扩展研究 [J]. 金属学报, 2017, 53: 1627)
[25] Liang J C, Wang Z, Xie H F, et al. In situ scanning electron microscopy-based high-temperature deformation measurement of nickel-based single crystal superalloy up to 800 ℃ [J]. Opt. Lasers Eng., 2018, 108: 1
[26] Bokstein B S, Epishin A I, Link T, et al. Model for the porosity growth in single-crystal nickel-base superalloys during homogenization [J]. Scr. Mater., 2007, 57: 801
[27] Chen Q Z, Kong Y H, Jones C N, et al. Porosity reduction by minor additions in RR2086 superalloy [J]. Scr. Mater., 2004, 51: 155
[28] Wang G L, Liu J L, Liu J D, et al. Temperature dependence of tensile behavior and deformation microstructure of a Re-containing Ni-base single crystal superalloy [J]. Mater. Des., 2017, 130: 131
[29] Luo Z P, Wu Z T, Miller D J. The dislocation microstructure of a nickel-base single-crystal superalloy after tensile fracture [J]. Mater. Sci. Eng., 2003, A354: 358
[30] Zhang L, Zhao L G, Roy A, et al. In-situ SEM study of slip-controlled short-crack growth in single-crystal nickel superalloy [J]. Mater. Sci. Eng., 2019, A742: 564
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[10] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[11] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[12] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[13] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[14] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[15] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
No Suggested Reading articles found!