Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1537-1552    DOI: 10.11900/0412.1961.2018.00360
Materials and Processes Current Issue | Archive | Adv Search |
Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder
Lei XU(), Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder. Acta Metall Sin, 2018, 54(11): 1537-1552.

Download:  HTML  PDF(6988KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The research status and application of powder metallurgy (PM) titanium alloys in connection with near net shape forming technology using hot isostatic pressing (HIP) are reviewed in this paper. A brief summary of historic developments with production of clean prealloyed powder and the use of computer simulation techniques in powder densification as important milestones is presented first. The bulk of the paper is concerned with progress made in the last 15 years, especially in the last decade, citing examples from the authors' group. Four types of alloys are covered: a cryogenic titanium alloy, Ti-5Al-2.5Sn with extra-low interstitial (ELI), which is used to make impeller for hydrogen pump of rocket engine, a high temperature titanium alloy Ti55, which is intended for long term service at 550 ℃ in engine applications, and two Ti-Al based intermetallic compounds including both γ-TiAl and an orthorhombic alloy based on Ti2AlNb. Comparisons in mechanical property were made between the PM alloys and their wrought and cast versions wherever possible. Key issues influencing densification, such as powder size segregation and gas pores in large powders, variation in powder surface oxygen content with powder store time, oxygen layer on γ-TiAl powder surface due to abnormally high fraction of the α2-Ti3Al phase as a result of rapid solidification of the powder, were discussed. The final section is dedicated to finite element modelling of powder densification, taking into account such factors as tooling design and stress shielding effect during HIPing. Future research directions are suggested in the summary section.

Key words:  titanium alloy      powder metallurgy      hydrogen pump impeller      hot isostatic pressing      near net shape forming     
Received:  01 August 2018     
ZTFLH:  TG146.23  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00360     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1537

Fig.1  Schematics of the processes for producing prealloyed Ti powders
(a) gas atomization (GA) (b) plasma rotating electrode process (PREP)
Fig.2  Manufacturing flow chart of powder metallurgy (PM) near net shape forming at Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS)
(a) part design (b) tooling assembly (c) capsule powder filling and degassing
(d) HIPing and partial tooling removal (HIP—hot isostatic pressing)(e) tooling removal finish machining by selective acid leaching (f) finished part
Sample Al Sn Fe Si C O N H Ti
ASTM B348 4.50~5.75 2.00~3.00 <0.25 <0.05 <0.05 <0.12 <0.035 <0.0125 Bal.
Electrode 5.01 2.49 0.06 0.006 0.006 0.076 0.005 0.001 Bal.
Powder 5.14 2.50 0.06 0.006 0.006 0.080 0.006 0.001 Bal.
Table 1  Chemical compositions of Ti-5Al-2.5Sn ELI pre-alloyed powder
(mass fraction / %)
Fig.3  Vacuum heating degassing equipment for titanium alloy powder developed at IMR, CAS
Sample 20 ℃ -253 ℃
σb / MPa δ / % αKU2 / (kJm-2) KIC / (MPam1/2) σb / MPa δ / %
PM impeller 805 15.5 620 103 1440 18.0
Wrought[51] 826 14.6 600 115 1460 17.6
Table 2  Mechanical properties of Ti-5Al-2.5Sn ELI alloy[51]
Fig.4  Schematic of a typical impeller tooling design[51]
Fig.5  Schematic diagram of size segregation during tapping
Fig.6  Comparison of the size of the cylinder capsules before (left) and after (right) HIP
Fig.7  Ti-5Al-2.5Sn ELI powder metallurgy hydrogen pump impeller fabricated by IMR, CAS (a) and its vertical section (b)
Fig.8  Microstructure of Ti55 powder compacts HIPed at 940 ℃[47]
State T / ℃ σb / MPa σs / MPa δ / % ψ / %
As-HIPed 20 974 921 16.0 28.4
600 586 465 15.8 22.9
960 ℃/1.5 h/AC+600 ℃/4 h/AC 20 994 902 14.8 39.0
600 655 510 20.8 34.5
990 ℃/1.5 h/AC+600 ℃/4 h/AC 20 1005 902 14.3 30.3
600 650 509 22.5 37.2
Table 3  Comparison of tensile properties of HIPed Ti55 alloy after different heat treatments at 20 and 600 ℃[47]
Fig.9  Comparison of tensile properties of cast, PM and wrought Ti55 alloys after heat treatment at 20 ℃ (a) and 600 ℃ (b)[47]
Fig.10  Comparison of tensile properties of AI, AII and AIII alloys made of Ti55 powder stored for 1 month, 6 months and 12 months, respectively
Fig.11  Thin-wall cylinder component of PM Ti55 alloy[63]
Fig.12  Microstructure of γ-TiAl showing γ phase IPF map of cast (a) and PM (c) alloy, as well as (111) and <110> pole figures of γ phase of cast (b) and PM (d) alloy[75]
Alloy T / ℃ σs / MPa σb / MPa δ / %
Cast TiAl RT 519.14 581.31 1.16
650 396.51 546.66 4.00
PM TiAl RT 618.95 644.72 1.38
650 433.80 584.80 7.60
Table 4  Typical tensile properties of cast and PM γ-TiAl alloys[75]
Fig.13  γ-TiAl PM parts fabricated by IMR, CAS(a) automobile engine connecting rod(b) engine ring structure demonstrator
Fig.14  Micro-CT analysis of Ti-22Al-24Nb-0.5Mo billet prepared via wrought (a) and PM (b) route[92]
Fig.15  Effect of solution temperature on RT tensile properties of PM Ti2AlNb alloys[92]
Ageing treatment T / ℃ σs / MPa σb / MPa δ / % L / h Microstructure
980 ℃/2 h/AC 20 992.12 1061.99 14.12 22.34 Equiaxed
650 755.10 1044.10 6.67
980 ℃/2 h/AC+800 ℃/24 h/AC 20 1066.29 1133.47 2.37 19.67 Lamellar
650 754.50 910.60 6.67
980 ℃/2 h/AC+830 ℃/24 h/AC 20 1005.74 1119.20 6.40 52.68 Lamellar
650 711.80 832.70 9.67
980 ℃/2 h/AC+850 ℃/24 h/AC 20 979.15 1100.34 7.40 56.97 Lamellar
650 694.80 828.40 12.67
980 ℃/2 h/AC+880 ℃/24 h/AC 20 919.48 1038.23 8.24 82.28 Lamellar
650 666.13 788.33 6.67
980 ℃/2 h/AC+900 ℃/24 h/AC 20 920.30 1038.60 12.39 88.08 Lamellar
650 675.77 770.80 6.89
1200 ℃/2 h/FC+760 ℃/14 h/AC 20 820.92 1003.63 3.72 200.00 Widmanst?tten
Table 5  Ageing effects on the tensile properties and stress rupture life at elevated temperature of PM Ti2AlNb alloys[93]
Fig.16  The predicted shrinkage of 2D symmetric sections before (a) and after (b) HIPing[51]
Position Actual size /mm Designed size /mm Relative error / %
I 14.88 15.00 0.80
II 42.28 42.00 0.67
III 5.07 5.00 1.40
IV 64.57 64.00 0.90
Table 6  Dimensional comparison of impeller at several critical locations
Fig.17  Shielding effect in HIPing process (P—hipping pressure; Pi— inner pressure; σX, σY, σZ—stresses; R2—outer radius; R1—inner radius of solid shell)
Fig.18  PM near net shaped forming Ti2AlNb alloy complex part (a) and its vertical section (b)
Fig.19  The effect of container size (R) on the relative density distribution of PM Ti2AlNb alloys[65](a) R=20 mm (b) R=80 mm
[1] Atkinson H V, Davies S.Fundamental aspects of hot isostatic pressing: An overview[J]. Metall. Mater. Trans., 2000, 31A: 2981
[2] Loh N L, Sia K Y.An overview of hot isostatic pressing[J]. J. Mater. Process. Technol., 1992, 30: 45
[3] Ran G, Zhou J E, Wang Q G.The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy[J]. J. Alloys Compd., 2006, 421: 80
[4] Nemat-Nasser S, Guo W G, Nesterenko V F, et al.Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: Experiments and modeling[J]. Mech. Mater., 2001, 33: 425
[5] McNeese M D, Lagoudas D C, Pollock T C. Processing of TiNi from elemental powders by hot isostatic pressing[J]. Mater. Sci. Eng., 2000, A280: 334
[6] Samarov V, Seliverstov D, Froes F H.In: Qian M, Froes F H, eds.,Titanium Powder Metallurgy [M]. Oxford: Butterworth-Heinemann, 2015: 313
[7] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129)
[8] Guo R P, Xu L, Wu J, et al.Microstructural evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response[J]. Mater. Sci. Eng., 2015, A639: 327
[9] Wang L, Lang Z B, Shi H P.Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 639
[10] Froes F H, Mashl S J, Hebeisen J C, et al.The technologies of titanium powder metallurgy[J]. JOM, 2004, 56(11): 46
[11] Zhang K, Mei J, Wain N, et al.Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples[J]. Metall. Mater. Trans., 2010, 41A: 1033
[12] Guo R P, Xu L, Zong B Y, et al.Preparation and ring rolling processing of large size Ti-6Al-4V powder compact[J]. Mater. Des., 2016, 99: 341
[13] Yuan W X, Mei J, Samarov V, et al.Computer modelling and tooling design for near net shaped components using hot isostatic pressing[J]. J. Mater. Process. Technol., 2007, 182: 39
[14] Wei Q S, Xue P J, Liu G C, et al.Simulation and verification of near-net shaping a complex-shaped turbine disc by hot isostatic pressing process[J]. Int. J. Adv. Manuf. Technol., 2014, 74: 1667
[15] Baccino R, Moret F, Pellerin F, et al.High performance and high complexity net shape parts for gas turbines: The ISOPREC? powder metallurgy process[J]. Mater. Des., 2000, 21: 345
[16] Guo R P, Xu L, Chen Z Y, et al.Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing[J]. Mater. Sci. Eng., 2017, A706: 57
[17] Yan M, Xu W, Dargusch M S, et al.Review of effect of oxygen on room temperature ductility of titanium and titanium alloys[J]. Powder Metall., 2014, 57: 251
[18] Xu L, Wu J, Cui Y Y, et al.In: Kim Y W, Smarsly W, Lin J P, et al eds., Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology [M]. Hoboken: Wiley, 2014: 195
[19] Rajenthirakumar D, Jagadeesh K A.Analysis of interaction between geometry and efficiency of impeller pump using rapid prototyping[J]. Int. J. Adv. Manuf. Technol., 2009, 44: 890
[20] Zhang X H, Shan Q, Chen Y L, et al.Application and development of titanium alloys for aircrafts[J]. Mater. China, 2011, 30(6): 28(张绪虎, 单群, 陈永来等. 钛合金在航天飞行器上的应用和发展[J]. 中国材料进展, 2011, 30(6): 28)
[21] Kanemoto T, Shimojyo M, Kawashima R, et al.Turbo-pump with isolated two stage impellers for future rocket engine (Trial to drive impellers independently)[J]. J. Therm. Sci., 2008, 17: 28
[22] Lütjering G, Williams J C.Titanium: Engineering Materials and Processes[M]. 2nd Ed., Berlin: Springer, 2007: 90
[23] Zhang K.The microstructure and properties of hipped powder Ti alloys [D]. Birmingham: University of Birmingham, 2010
[24] Fang Z Z, Paramore J D, Sun P, et al.Powder metallurgy of titanium—Past, present, and future[J]. Int. Mater. Rev., 2018, 7: 407
[25] Rabin B H, Smolik G R, Korth G E.Characterization of entrapped gases in rapidly solidified powders[J]. Mater. Sci. Eng., 1990, A124: 1
[26] Guo R P, Xu L, Zong B Y P, et al. Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 735
[27] Li S G, Lü H J, He S H, et al.Special forming process of cryogenic complicated structural parts[J]. Aerosp. Mater. Technol., 2012, (1): 82(李圣刚, 吕宏军, 何士桓等. 低温复杂结构件特种成形工艺[J]. 宇航材料工艺, 2012, (1): 82)
[28] Lin G K.Study on numerical simulation process and component properties of near net hot isostatic pressing by Ti6Al4V powder [D]. Wuhan: Huazhong University of Science and Technology, 2012(蔺广科. 钛合金热等静压近净成形过程数值模拟及制件性能研究 [D]. 武汉: 华中科技大学, 2012)
[29] Wang J W.Study on hot isostatic pressing near net shaping technology of difficult processing materials and their mechanical properties [D]. Wuhan: Huazhong University of Science and Technology, 2012(王基维. 难加工材料热等静压近净成形工艺基础及零件性能研究 [D]. 武汉: 华中科技大学, 2012)
[30] Liu G C.Metal powders densification under hot isostatic pressing: Numerical simulation and experiment [D]. Wuhan: Huazhong University of Science and Technology, 2011(刘国承. 金属粉末热等静压致密化数值模拟与试验研究 [D]. 武汉: 华中科技大学, 2011)
[31] Cai C.Key technology study for integral fabrication of high-performance titanium alloy component by hot isostatic pressing [D]. Wuhan: Huazhong University of Science and Technology, 2017(蔡超. 高性能钛合金材料的热等静压制备与成形一体化关键技术研究 [D]. 武汉: 华中科技大学, 2017)
[32] Xue Y, Lang L H, Bu G L, et al.Densification modeling of titanium alloy powder during hot isostatic pressing[J]. Sci. Sinter., 2011, 43: 247
[33] Lang L H, Bu G L, Xue Y, et al.Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti-6Al-4V) hot isostatic pressing[J]. J. Plast. Eng., 2011, 18(4): 34(郎利辉, 布国亮, 薛勇等. 钛合金热等静压模拟本构关键参数确定及工艺优化[J]. 塑性工程学报, 2011, 18(4): 34)
[34] Wang G, Xu L, Tian Y X, et al.Flow behavior and microstructure evolution of a P/M TiAl alloy during high temperature deformation[J]. Mater. Sci. Eng., 2011, A528: 6754
[35] Wang G, Xu L, Wang Y, et al.Processing maps for hot working behavior of a PM TiAl alloy[J]. J. Mater. Sci. Technol., 2011, 27: 893
[36] Xu L, Cui Y Y, Hao Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples [J]. Mater. Sci. Eng., 2006, A435-436: 638
[37] Xu L, Bai C G, Liu D, et al.In: Kim Y W, Morris D G, Yang R, et al eds., Structural Aluminides for Elevated Temperature Applications [M]. Warrendale, PA: TMS, 2008: 179
[38] Xu L, Guo R P, Bai C G, et al.Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder[J]. J. Mater. Sci. Technol., 2014, 30: 1289
[39] Guo R P, Xu L, Bai C G, et al.Effects of can design on tensile properties of typical powder metallurgy titanium alloys[J]. Chin. J. Nonferrous Met., 2014, 24: 2050(郭瑞鹏, 徐磊, 柏春光等. 包套设计对典型粉末钛合金拉伸性能的影响[J]. 中国有色金属学报, 2014, 24: 2050)
[40] Guo R P, Xu L, Lei J F, et al.Effects of porosity and re-HIP on properties of Ti-6Al-4V alloy from atomized powder[J]. Appl. Mech. Mater., 2014, 552: 274
[41] Wu J.Densification behavior of Ti-5Al-2.5Sn ELI pre-alloyed powders under hot isostatic pressing [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(邬军. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[42] Li S Q.The preparation and microstructure research of rapidly solidified powder metallurgy Ti-60 alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2010(李少强. 快速凝固粉末冶金Ti-60钛合金的制备及显微组织研究 [D]. 沈阳: 中国科学院金属研究所, 2010)
[43] Wang G.An investigation of the fabrication and high temperature deformation behavior of P/M TiAl alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(王刚. 粉末冶金TiAl合金制备及高温变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[44] Wu J.Preparation and mechanical properties optimization of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys [D]. Beijing: University of Chinese Academy of Sciences, 2016(吴杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016)
[45] Guo R P.Mechanical properties of powder metallurgy titanium alloys and densification of titanium powders during HIPing [D]. Shenyang: Northeastern University, 2014(郭瑞鹏. 粉末冶金钛合金力学性能与热等静压致密化研究 [D]. 沈阳: 东北大学, 2014)
[46] Cheng W X.Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders during HIPing [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2013(程文祥. Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究 [D]. 沈阳: 中国科学院金属研究所, 2013)
[47] Guo R P.Hot isostatic pressing of titanium alloys powders [D]. Shenyang: Northeastern University, 2018(郭瑞鹏. 钛合金粉末热等静压成型工艺研究 [D]. 沈阳: 东北大学, 2018)
[48] Cai C, Song B, Xue P J, et al.Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties[J]. J. Alloys Compd., 2016, 686: 55
[49] Yuri T, Ono Y, Ogata T.Effects of surface roughness and notch on fatigue properties for Ti-5Al-2.5Sn ELI alloy at cryogenic temperatures[J]. Sci. Technol. Adv. Mater., 2003, 4: 291
[50] Guo R P, Xu L, Cheng W X, et al.Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy[J]. Acta Metall. Sin., 2016, 52: 842(郭瑞鹏, 徐磊, 程文祥等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响[J]. 金属学报, 2016, 52: 842)
[51] Guo R P, Zhang J, Xu L, et al.Mechanical properties of Ti-5Al-2.5Sn ELI powder compacts[J]. Chin. J. Mater. Res., 2018, 32: 333(郭瑞鹏, 张静, 徐磊等. Ti-5Al-2.5Sn ELI粉末合金的力学性能[J]. 材料研究学报, 2018, 32: 333)
[52] Wang G, Zheng Z, Chang L T, et al.Characterization of TiAl pre-alloyed powder and its densification microstructure[J]. Acta Metall. Sin., 2011, 47: 1263(王刚, 郑卓, 常立涛等. TiAl预合金粉末的表征和后续致密化显微组织特点[J]. 金属学报, 2011, 47: 1263)
[53] Li S Q, Chen Z Y, Wang Z H, et al.The densification of rapid solidification high temperature titanium alloy powder by hot isostatic pressing[J]. Chin. J. Mater. Res., 2013, 27: 97(李少强, 陈志勇, 王志宏等. 一种快速凝固高温钛合金粉末的热等静压成形致密化过程及其机制研究[J]. 材料研究学报, 2013, 27: 97)
[54] Guo R P, Xu L, Wu J, et al.Preparation and welding performance of Ti-6Al-4V powder compact prepared by hot isostatic pressing[J]. Mater. Sci. Forum, 2016, 849: 760
[55] Wu J, Xu L, Lu Z G, et al.Preparation of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys and electron beam welding[J]. Acta Metall. Sin., 2016, 52: 1070(吴杰, 徐磊, 卢正冠等. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接[J]. 金属学报, 2016, 52: 1070)
[56] Cheng W X, Xu L, Lei J F, et al.Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder[J]. Chin. J. Nonferrous Met., 2013, 23: 362(程文祥, 徐磊, 雷家峰等. 粉末粒度偏析对Ti-5Al-2.5Sn ELI粉末合金拉伸性能的影响[J]. 中国有色金属学报, 2013, 23: 362)
[57] van Nguyen C, Bezold A, Broeckmann C. Anisotropic shrinkage during hip of encapsulated powder[J]. J. Mater. Process. Technol., 2015, 226: 134
[58] Xu L, Guo R P, Lei J F, et al.Densification process and properties of powder metallurgy Ti-5Al-2.5Sn alloy[J]. Appl. Mech. Mater., 2014, 552: 278
[59] Wang Q J, Liu J R, Yang R.High temperature titanium alloys: Status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1(王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1)
[60] Xu L, Guo R P, Liu Y Y.Cost analysis of titanium alloy parts through near-net-shape hot-isostatic-pressing technology[J]. Titanium Ind. Prog., 2014, 31(6): 1(徐磊, 郭瑞鹏, 刘羽寅. 钛合金粉末热等静压近净成形成本分析[J]. 钛工业进展, 2014, 31(6): 1)
[61] Chang L T, Sun W R, Cui Y Y, et al.Influences of hot-isostatic-pressing temperature on microstructure, tensile properties and tensile fracture mode of Inconel 718 powder compact[J]. Mater. Sci. Eng., 2014, A599: 186
[62] Li W B, Easterling K E.Cause and effect of non-uniform densification during hot isostatic pressing[J]. Powder Metall., 1992, 35: 47
[63] Xu L, Guo R P, Chen Z Y, et al.Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys[J]. Chin. J. Mater. Res., 2016, 30: 23(徐磊, 郭瑞鹏, 陈志勇等. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型[J]. 材料研究学报, 2016, 30: 23)
[64] Chang L T, Sun W R, Cui Y Y, et al.Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries[J]. Mater. Sci. Eng., 2017, A682: 341
[65] Wu J, Guo R P, Xu L, et al.Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2017, 33: 172
[66] Kim Y W, Kim S L.Advances in Gammalloy materials-processes-application technology: Successes, dilemmas, and future[J]. JOM, 2018, 70: 553
[67] Lasalmonie A.Intermetallics: Why is it so difficult to introduce them in gas turbine engines?[J]. Intermetallics, 2006, 14: 1123
[68] Wu X H.Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006, 14: 1114
[69] Clemens H, Mayer S.Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Adv. Eng. Mater., 2013, 15: 191
[70] Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology [M]. Weinheim:Wiley-VCH, 2011: Chapter 3: 25
[71] Zhang J, Jing Y J, Fu M J, et al.Microstructure optimization of ingot metallurgy TiAl[J]. Intermetallics, 2012, 27: 21
[72] Paul J D H, Lorenz U, Oehring M, et al. Up-scaling the size of TiAl components made via ingot metallurgy[J]. Intermetallics, 2013, 32: 318
[73] Chen G L, Xu X J, Teng Z K, et al.Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale[J]. Intermetallics, 2007, 15: 625
[74] Wang S R, Guo P Q, Yang L Y.Centrifugal precision cast TiAl turbocharger wheel using ceramic mold[J]. J. Mater. Process. Technol., 2008, 204: 492
[75] Wu J, Xu L, Guo R P, et al.Preparation of γ-TiAl alloy from powder metallurgy route and analysis of the influence factors of mechanical properties[J]. Chin. J. Mater. Res., 2015, 29: 127(吴杰, 徐磊, 郭瑞鹏等. 粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素[J]. 材料研究学报, 2015, 29: 127)
[76] Banerjee D, Gogia A K, Nandi T K, et al.A new ordered orthorhombic phase in a Ti3Al-Nb alloy[J]. Acta Metall., 1988, 36: 871
[77] Germann L, Banerjee D, Guédou J Y, et al.Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide[J]. Intermetallics, 2005, 13: 920
[78] Chen W, Li J W, Xu L, et al.Development of Ti2AlNb alloys: Opportunities and challenges[J]. Adv. Mater. Process., 2014, 172: 23
[79] Shen J, Feng A H.Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys[J]. Acta Metall. Sin., 2013, 49: 1286(沈军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49: 1286)
[80] Banerjee D.The intermetallic Ti2AlNb[J]. Prog. Mater. Sci., 1997, 42: 135
[81] Boehlert C J.The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. J. Phase Equilib., 1999, 20: 101
[82] Emura S, Araoka A, Hagiwara M.B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy[J]. Scr. Mater., 2003, 48: 629
[83] Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J]. Mater. Sci. Eng., 2002, A329-331: 492
[84] Cowen C J, Boehlert C J.Comparison of the microstructure, tensile, and creep behavior for Ti-22Al-26Nb (At. Pct) and Ti-22Al-26Nb-5B (At. Pct)[J]. Metall. Mater. Trans., 2007, 38A: 26
[85] Boehlert C J, Majumdar B S, Seetharaman V, et al.Part I. The microstructural evolution in Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metall. Mater. Trans., 1999, 30A: 2305
[86] Boehlert C J, Miracle D B. Part II.The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metall. Mater. Trans., 1999, 30A: 2349
[87] Boehlert C J. Part III.The tensile behavior of Ti-Al-Nb O+bcc orthorhombic alloys[J]. Metall. Mater. Trans., 2001, 32A: 1977
[88] Lu Z G, Wu J, Guo R P, et al.Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 621
[89] Niu H Z, Chen Y F, Zhang D L, et al.Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization[J]. Mater. Des., 2016, 89: 823
[90] Wang Y.The study on alloying, hot deformation behaviors and mechanical properties of Ti2AlNb based alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012(王永. Ti2AlNb基合金的合金化、热加工及力学性能研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[91] Lu Z G, Wu J, Xu L, et al.Comparative study on hot workability of powder metallurgy Ti-22Al-24Nb-0.5Mo alloy[J]. Chin. J. Mater. Res., 2015, 29: 445(卢正冠, 吴杰, 徐磊等. 粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究[J]. 材料研究学报, 2015, 29: 445)
[92] Wu J, Xu L, Lu Z G, et al.Microstructure design and heat response of powder metallurgy Ti2AlNb alloys[J]. J. Mater. Sci. Technol., 2015, 31: 1251
[93] Wu J, Xu L, Lu B, et al.Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime[J]. Chin. J. Mater. Res., 2014, 28: 387(吴杰, 徐磊, 卢斌等. 粉末冶金Ti2AlNb合金的制备及持久寿命[J]. 材料研究学报, 2014, 28: 387)
[94] Wu J, Xu L, Guo R P, et al.Microstructure and mechanical properties of powder metallurgy Ti-22Al-24Nb-0.5Mo (at.%) alloys[J]. Mater. Res. Innov., 2015, 19: S9-46
[95] Wu J, Xu L, Guo R P, et al.Microstructure and mechanical properties of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys joints with electron beam welding[J]. Mater. Sci. Forum, 2016, 849: 321
[96] Qiu C L.Net-shape hot isostatic pressing of a nickel-based powder superalloy [D]. Birmingham: University of Birmingham, 2010
[97] Olevsky E, Maximenko A, van Dyck S, et al. Container influence on shrinkage under hot isostatic pressing—I. Shrinkage anisotropy of a cylindrical specimen[J]. Int. J. Solids Struct., 1998, 35: 2283
[98] Wu J, Xu L, Lu Z G, et al.Effect of container on the microstructure and properties of powder metallurgy TiAl alloys[J]. Mater. Sci. Forum, 2015, 817: 604
[99] Lang L H, Wang G, Huang X N, et al.Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing[J]. Chin. J. Nonferrous Met., 2016, 26: 261(郎利辉, 王刚, 黄西娜等. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响[J]. 中国有色金属学报, 2016, 26: 261)
[100] Delo D P, Piehler H R.Early stage consolidation mechanisms during hot isostatic pressing of Ti-6Al-4V powder compacts[J]. Acta Mater., 1999, 47: 2841
[101] Cai C, Song B, Xue P J, et al.A novel near α-Ti alloy prepared by hot isostatic pressing: microstructure evolution mechanism and high temperature tensile properties[J]. Mater. Des., 2016, 106: 371
[102] Sanchez L, Ouedraogo E, Dellis C, et al.Influence of container on numerical simulation of hot isostatic pressing: final shape profile comparison[J]. Powder Metall., 2004, 47: 253
[103] Qiu C L, Attallah M M, Wu X H, et al.Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder[J]. Mater. Sci. Eng., 2013, A564: 176
[104] Jiang H, Zhang K, Garcia-Pastor F A, et al. Microstructure and properties of hot isostatically pressed powder and extruded Ti25V15Cr2Al0.2C[J]. Mater. Sci. Technol., 2011, 27: 1241
[105] Essa K, Khan R, Hassanin H, et al.An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts[J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1835
[106] Cao L F, Wu X D, Zhu S M, et al.The effect of HIPping pressure on phase transformations in Ti-5Al-5Mo-5V-3Cr[J]. Mater. Sci. Eng., 2014, A598: 207
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[4] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[5] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[6] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[7] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[9] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[10] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[11] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[12] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[13] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[14] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[15] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
No Suggested Reading articles found!