Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (8): 1094-1104    DOI: 10.11900/0412.1961.2017.00472
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area
Shaopeng QU1(), Baizhang CHENG1, Lihua DONG1, Yansheng YIN1, Lijing YANG2
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

Shaopeng QU, Baizhang CHENG, Lihua DONG, Yansheng YIN, Lijing YANG. Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area. Acta Metall Sin, 2018, 54(8): 1094-1104.

Download:  HTML  PDF(7107KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Deep-sea hydrothermal area has a lot of mineral resources, and study the corrosion behavior of metal in deep-sea hydrothermal area is useful for marine resource development. Electrochemical impedance spectroscopy, linear polarization, potentiodynamic polarization and Mott-Schottky analysis were used to study the electrochemical properties of 2205 steel in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures. Corrosion morphologies and corrosion products of 2205 steel after electrochemical tests were analyzed by SEM, EDS and white light interferometry. The results show that 2205 steel has good pitting resistance under 25 ℃ in simulated hydrothermal area, pit occurred on the surface of 2205 steel after the solution temperature reaching 65 ℃, crack-shaped pit occurred on the surface of 2205 steel under 150 and 200 ℃. Pit occurs in austenite phase at 65 ℃, and occurs in ferrite phase at 100~200 ℃. Impedance and linear polarization resistance of 2205 steel first decrease and then increase with temperature increasing in simulated hydrothermal area, and impedance and linear polarization resistance under 150 ℃ are lowest. Pitting potential of 2205 steel first negative shift and then positive shift, and carrier density of passive film formed in simulated hydrothermal area increase with temperature increasing.

Key words:  2205 steel      hydrothermal area      temperature      corrosion      electrochemistry     
Received:  10 November 2017     
ZTFLH:  TG172.5  
Fund: Supported by National Natural Science Foundation of China (No.51701115), National Basic Research Program of China (No.2014CB643306) and Foundation of Key Laboratory of Marine Materials and Applied Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (No.2016K04)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00472     OR     https://www.ams.org.cn/EN/Y2018/V54/I8/1094

Fig.1  OM image of 2205 steel
Fig.2  Schematic of electrochemical measurement system (1—thermocouple (heating resistor ring), 2—thermocouple (solution), 3—liquid inlet (with valve), 4—heating resistor ring, 5—liquid outlet (with valve), 6—liquid inlet (with valve), 7—Pt electrode, 8—sample, 9—salt bridge, RE—reference electrode, WE—work electrode, CE—counter electrode)
Fig.3  Open circuit potentials (E) of 2205 steels in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
Fig.4  Electrochemical impedance spectroscopies (EIS) of 2205 steels in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
Fig.5  Equivalent circuit for electrochemical impedance spectroscopy results (R(QR(RQ))) (Rs—solution resistance, Rt—charge transfer resistance, Rpit—pit resistance, Qdl—double layer capacitance, Qpit—pit capacitance)
Temperature Rs Qdl Rt Rpit Qpit
Ωcm2 Y0 / (10-4 Ssncm-2) n 103 Ωcm2 Ωcm2 Y0 / (10-4 Ssncm-2) n
25 8.16 0.61 0.806 15.20 520.0 3.34 0.381
65 5.93 1.16 0.796 4.58 330.0 3.52 0.532
100 6.25 3.96 0.522 3.46 10.8 0.25 0.912
150 1.76 4.79 0.536 1.47 13.7 0.27 1.000
200 1.05 3.00 0.298 3.59 470.0 1.15 0.612
Table 1  EIS fitting results of 2205 steel in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
Fig.6  Linear polarizations of 2205 steels in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures (i—current density)
Fig.7  Potentiodynamic polarization curves of 2205 steel in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures (a) and with different dissolved oxygen (b)
Temperature Ecorr Eb Ep ip
V V V 10-4 Acm-2
25 -0.504 0.964 0.288 1.00
65 -0.381 0.683 -0.121 2.65
100 -0.290 0.157 -0.062 2.43
150 -0.179 0.208 -0.070 2.29
200 -0.375 0.701 -0.207 4.38
Table 2  The electrochemical parameters of 2205 steel in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
Fig.8  Mott-Schottky curves of 2205 steels in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures (C—charge capacitance)
Temperature ND NA
1022 cm-3 1022 cm-3
25 10.60 15.53
65 24.36 48.65
100 20.90 37.91
150 68.49 -
200 81.96 -
Table 3  The carrier concentrations of the passive film of 2205 steel formed in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
Fig.9  Surface morphologies of 2205 steels after corrosion in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
(a) 25 ℃ (b) 65 ℃ (c) 100 ℃ (d) 150 ℃ (e) 200 ℃
Fig.10  Backscatter electron images of surface of 2205 steel after corrosion in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures
(a) 65 ℃ (b) 100 ℃ (c) 150 ℃ (d) 200 ℃
Fig.11  White light interference results of the pits of 2205 steel after electrochemical tests in 20 MPa hydrostatic pressure 3.5%NaCl solution with temperatures of 65 ℃ (a), 100 ℃ (b), 150 ℃ (c) and 200 ℃ (d)
Position Ni Si Mo Cr Fe O
2205 8.23 0.96 3.15 22.13 63.92
Ferrite 7.30 1.04 3.67 23.24 64.75
Austenite 11.45 0.88 2.94 20.89 63.85
65 ℃-out 8.26 0.89 2.99 22.30 61.16 ?
100 ℃-out 8.30 1.15 3.29 22.34 60.22 ?
150 ℃-out 10.03 0.97 2.37 19.84 62.88 ?
200 ℃-out 10.36 1.19 3.11 24.21 42.99 13.05
65 ℃-pit 13.58 2.04 2.02 20.53 52.62 ?
100 ℃-pit 12.47 0.84 2.30 19.74 60.64 ?
150 ℃-pit 1.11 0.21 1.14 29.35 68.18 ?
200 ℃-pit 2.60 0.33 1.38 40.39 50.85 3.31
Table 4  EDS results of the corrosion surfaces of 2205 steel after electrochemical tests in 20 MPa hydrostatic pressure 3.5%NaCl solution with different temperatures (mass fraction / %)
[1] Spiess F N, Macdonald K C, Atwater T, et al.East pacific rise: Hot springs and geophysical experiments[J]. Science, 1980, 207: 1421
[2] Haymon R M, Macdonald K C.The geology of deep-sea hot springs[J]. Am. Sci., 1985, 73: 441
[3] Feng J, Li J H, Chen Z, et al.A review on "black smokers" and its implication for origin of life[J]. Acta Sci. Nat. Univ. Peking, 2004, 40: 318(冯军, 李江海, 陈征等. “海底黑烟囱”与生命起源述评[J]. 北京大学学报(自然科学版), 2004, 40: 318)
[4] Zeng Z G, Liu C H, Yin X B, et al.Initial findings of first global voyage of Dayang No. 1 (DY105-17A) in East Pacific Rise[J]. Acta Mineral. Sin., 2007, 27(suppl.): 369(曾志刚, 刘长华, 殷学博等. 大洋一号首次环球航次(DY105-17A)在东太平洋海隆的初步调查结果[J]. 矿物学报, 2007, 27(增刊): 369)
[5] Wu Z W, Sun X M, Dai Y Z, et al.The discovery of native gold in massive sulfidesfrom the Edmond hydrothermal field, Central Indian Ridge and its significance[J]. Acta Petrol. Sin., 2011, 27: 3749(吴仲玮, 孙晓明, 戴瑛知等. 中印度洋海岭Edmond热液区块状硫化物中自然金的发现及其意义[J]. 岩石学报, 2011, 27: 3749)
[6] Guo J J, Yu Z H, Li H M.Rare earth elements in the sediments from Baoshishan hydrothermal field near the Galapagos microplate[J]. Period. Ocean Univ. China, 2013, 43(12): 66(郭静静, 于增慧, 李怀明. Galapagos微板块附近宝石山热液区沉积物稀土元素组成特征[J]. 中国海洋大学学报, 2013, 43(12): 66)
[7] Zhang Y.Study on welding structure stress corrosion fatigue properties of 2205 duplex stainless steel [D]. Chongqing: Chongqing Jiaotong University, 2013(张瑶. 2205双相不锈钢焊接结构应力腐蚀疲劳性能研究 [D]. 重庆: 重庆交通大学, 2013)
[8] Fan Q Q, Hua L.Influence factor of corrosion behavior of 2205 duplex stainless steel[J]. Corros. Sci. Prot. Technol., 2014, 26: 178(范强强, 华丽. 2205双相不锈钢腐蚀行为的影响因素[J]. 腐蚀科学与防护技术, 2014, 26: 178)
[9] Feng H, Zhou X Y, Liu H, et al.Development and trend of hyper duplex stainless steels[J]. J. Iron Steel Res., 2015, 27(4): 1(丰涵, 周晓玉, 刘虎等. 特超级双相不锈钢的发展现状及趋势[J]. 钢铁研究学报, 2015, 27(4): 1)
[10] Cheng B Z, Qu S P, Dong L H, et al. The influence of hydrostatic pressure on the corrosion electrochemistry characters of2205 steel in deep sea environment[J]. Corros. Prot., 2018, 39: doi: 10.11973/fsyfh-201811001(程柏璋, 屈少鹏, 董丽华等. 深海环境中静水压对2205钢腐蚀电化学性质的影响 [J]. 腐蚀与防护, 2018, 39: doi: 10.11973/fsyfh-201811001)
[11] Xu Y S, Xie H S, Guo J, et al.Conductivity of NaCl solution at 0.4-5.0 GPa and 25-500 ℃[J]. Sci. China, 1997, 27D: 398(徐有生, 谢鸿森, 郭捷等. 0.4~5.0 GPa和室温~500 ℃下NaCl溶液的电导率[J]. 中国科学, 1997, 27D: 133)
[12] Cao C N.On the theoretical errors of linear polarization techniques[J]. J. Chin. Soc. Corros. Prot., 1981, 1(2): 1(曹楚南. 线性极化电阻的理论误差及其纠正方法[J]. 中国腐蚀与防护学报, 1981, 1(2): 1)
[13] Wang F P, Jing H M, Xin C M.Electrochemistry of Corrosion [M]. 2nd Ed., Beijing: Chemical Industry Press, 2017: 199(王凤平, 敬和民, 辛春梅. 腐蚀电化学 [M]. 第2版, 北京: 化学工业出版社, 2017: 199)
[14] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 127(曹楚南. 腐蚀电化学原理 [M]. 第3版, 北京: 化学工业出版社, 2008: 127)
[15] Han D, Jiang Y M, Deng B, et al.Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel[J]. Acta Metall. Sin., 2009, 45: 919(韩冬, 蒋益明, 邓博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45: 919)
[16] Dong C F, Xiao K, Chen T, et al.Characterization and comparison of conducting polyaniline synthesized by three different pathways[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26: 1068
[17] Du N, Tian W M, Zhao Q, et al.Pitting corrosion dynamics and mechanisms of 304 stainless steel in 3.5%NaCl solution[J]. Acta Metall. Sin., 2012, 48: 807(杜楠, 田文明, 赵晴等. 304不锈钢在3.5%NaCl溶液中的点蚀动力学及机理[J]. 金属学报, 2012, 48: 807)
[18] Schultze J W, Lohrengel M M.Stability, reactivity and breakdown of passive films. Problems of recent and future research[J]. Electrochim. Acta, 2000, 45: 2499
[19] Sikora E, Macdonald D D.Nature of the passive film on nickel[J]. Electrochim. Acta, 2002, 48: 69
[20] Cai W T, Zhao G X, Zhao D W, et al.Corrosion resistance and semiconductor properties of passive films formed on super 13Cr stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2011, 33: 1226(蔡文婷, 赵国仙, 赵大伟等. 超级13Cr不锈钢的钝化膜耐蚀性与半导体特性[J]. 北京科技大学学报, 2011, 33: 1226)
[21] Kim J S, Cho E A, Kwon H S.Photoelectrochemical study on the passive film on Fe[J]. Corros. Sci., 2001, 43: 1403
[22] Zhang C X, Zhang Z H.Corrosion resistance of the passive films formed on the G3 nickel-base alloy in different conditions[J]. Baosteel Technol., 2008, 26(5): 35(张春霞, 张忠铧. G3镍基合金钝化膜的耐蚀性研究[J]. 宝钢技术, 2008, 26(5): 35)
[23] Wang C, Zhi Y M, Sheng M Q, et al.Semiconductor characters of passive film on AISI304 stainless steel surface in electrolytes during corrosion process[J]. Corros. Prot., 2009, 30: 369(王超, 支玉明, 盛敏奇等. AISI304不锈钢钝化膜在电解质溶液中腐蚀时的半导体性质[J]. 腐蚀与防护, 2009, 30: 369)
[24] Melchers R E.Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth[J]. Corrosion, 2004, 60: 937
[25] Wang B C, Zhu J H.Semiconducting behaviors of passive films of stainless steel under ultrasonic cavitation[J]. Acta Metall. Sin., 2007, 43: 813(王保成, 朱金华. 超声空化下不锈钢钝化膜的半导行为[J]. 金属学报, 2007, 43: 813)
[26] Macdonald D D.The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
[27] Gao L, Wang B C.Influence of corrosion behaviors and semiconductor properties for passive film of SUS304 and SUS430 stainless steel by temperature[J]. J. Taiyuan Univ. Technol., 2015, 46: 268(高磊, 王保成. 温度对SUS304与SUS430不锈钢耐腐蚀性及其钝化膜半导体性能的影响[J]. 太原理工大学学报, 2015, 46: 268)
[28] Shu J.Investigation on corrosion resistance properties and formabilities of ferritic stainless steel used as aumotive exhaust system [D]. Shanghai: Shanghai Jiao Tong University, 2013(舒俊. 汽车排气系统用铁素体不锈钢耐蚀性能和成形性能的研究 [D]. 上海: 上海交通大学, 2013)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[15] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
No Suggested Reading articles found!