Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1385-1392    DOI: 10.11900/0412.1961.2017.00255
Orginal Article Current Issue | Archive | Adv Search |
Plastic Deformation Behavior of Biomedical Ti-24Nb-4Zr-8Sn Single Crystal Alloy
Jinrui ZHANG1,2, Yanwei ZHANG3, Yulin HAO1(), Shujun LI1, Rui YANG1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Life Management Technology Center, Suzhou Nuclear Power Research Institute, Suzhou 215004, China
Download:  HTML  PDF(5955KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Excellent corrosion resistance, good biocompatibility and relatively low elastic modulus make Ti and Ti alloys fulfill the property requirements in the biomedical field better than other competing materials such as stainless steels. Even so, there still exist some problems to be solved such as the biological toxicity of some alloy elements and the so-called stress shielding effect caused by higher elastic modulus than that of human bone. In response to these issues, several metastable β-type Ti alloys were developed with the advantage of nontoxicity and a much lower elastic modulus. Ti-24Nb-4Zr-8Sn (mass fraction, %, abbreviated Ti2448) alloy is a multifunctional biomedical Ti alloy with high strength and low elastic modulus, which makes it show great application prospect in the field of body implant. It put up obvious nonlinear elasticity and highly localized plastic deformation behavior. Study on deformation behavior of single crystal can help to understand the deformation mechanism of polycrystalline alloy. In this work, Ti2448 single crystal alloy along three different orientations were prepared by optical floating zone method. The plastic deformation behaviors of them under tensile stress were investigated in terms of mechanical properties, slip system and fracture morphology. Results show that Ti2448 single crystal shows obvious anisotropy, the tensile strengths along <100>, <110> and <111> orientations are 650, 642 and 889 MPa, respectively, while the elongations are about 73%, 22% and 13%, respectively. The main plastic deformation mechanism of Ti2448 single crystal alloy is by slip. The appearance of slip bands and its direction relationship with crystal orientation were detailed observed. Under tensile stress, the operated slip systems for <100>, <110> and <111> orientation single crystals are (112)[111]/(112)[111]/(112)[111]/(112)[111], (211)[111]/(211)[111] and (211)[111], respectively. This is in accordance with the law of critical shearing stress. SEM analyses show a fracture surface shape of rectangle, duckbilled and triangle for the <100>, <110> and <111> orientation single crystals, respectively. The intersection angle between fracture surface and loading direction is all about 55 degree, and a lot of dimple was detected that show ductile fracture mode.

Key words:  biomedical metal      titanium alloy      single crystal      plastic deformation     
Received:  29 June 2017     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (Nos.51571190, 51271180, 51631007 and 51527801), National High Technology Research and Development Program of China (No.2015AA033702) and National Key Research and Development Program of China (Nos.2016YFC1102600 and 2017YFC1104903)

Cite this article: 

Jinrui ZHANG, Yanwei ZHANG, Yulin HAO, Shujun LI, Rui YANG. Plastic Deformation Behavior of Biomedical Ti-24Nb-4Zr-8Sn Single Crystal Alloy. Acta Metall Sin, 2017, 53(10): 1385-1392.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00255     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1385

Orientation LD TD ND
<100> [001] [100] [01?0]
<110> [011] [01?1] [100]
<111> [1?11] [011?] [211]
Table 1  Correspondence relationships between tensile sample and crystal direction index of Ti2448 single crystal alloy along different orientations
Orientation E / GPa σb / MPa δ / % φ / %
<100> 27.1 650 73 62
<110> 56.3 642 22 75
<111> 88.1 889 13 65
Table 2  Uniaxial tensile properties of Ti2448 single crystal alloy along different orientations
Orientation Slip system Schmid factor
<100> (112)[111?] / (1?12)[11?1] / (11?2)[ 1?11] / (112?)[111] 0.471
<110> (211)[ 1?11] / (2?11)[111] 0.471
<111> (1?12)[11?1] / (1?21)[111?] / (2?11)[111] 0.314
Table 3  Slip systems with the maximum Schmid factor under tensile stress of Ti2448 single crystal alloy along different orientations
Fig.1  Identification of operated slip systems under tensile stress of Ti2448 single crystal along <100> orientation, with slip traces of (0$\overline{1}$0) plane (a), (010) plane (b), (100) plane (c) and schematic diagram (d)
Fig.2  Identification of operated slip systems under tensile stress of Ti2448 single crystal along <110> orientation, with slip traces of (100) plane (a), ($\overline{1}$00) plane (b), (0$\overline{1}$1) plane (c) and schematic diagram (d)
Fig.3  Identification of operated slip systems under tensile stress of Ti2448 single crystal along <111> orientation, with slip traces of (211) plane (a, b), (01$\overline{1}$) plane (c) and schematic diagram (d)
Fig.4  Side-view SEM images of tensile samples after fracture of Ti2448 single crystal alloy along <100> (a), <110> (b) and <111> (c) orientations
Fig.5  SEM images of macrostructures on fracture shape of tensile samples of Ti2448 single crystal alloy along <100> (a), <110> (b) and <111> (c) orientations
Fig.6  SEM images of microstructures on fracture surfaces of tensile samples of Ti2448 single crystal alloy along <100> (a), <110> (b) and <111> (c) orientations
[1] Ren Y B, Yang K, Liang Y.Research and development of new biomedical metallic materials[J]. Mater. Rev., 2002, 16(2): 12(任伊宾, 杨柯, 梁勇. 新型生物医用金属材料的研究和进展[J]. 材料导报, 2002, 16(2): 12)
[2] Zheng Y F, Wu Y H.Revolutionizing metallic biomaterials[J]. Acta Metall. Sin., 2017, 53: 257(郑玉峰, 吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53: 257)
[3] Brunette D M, Tengvall P, Textor M, et al.Titanium in Medicine[M]. Berlin: Springer-Verlag, 2001: 45
[4] Lütjering G, Williams J C.Titanium[M]. 2nd Ed., New York: Springer, 2007: 138
[5] Long M, Rack H J.Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998, 19: 1621
[6] Saito T, Furuta T, Hwang J H, et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J]. Science, 2003, 300: 464
[7] Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[8] Hao Y L, Yang R.High-strength multifunctional Ti-Nb-Zr-Sn alloy[J]. China Basic Sci., 2007, (5): 19(郝玉琳, 杨锐. 高强度多功能Ti-Nb-Zr-Sn合金[J]. 中国基础科学, 2007, (5): 19)
[9] Yang R, Hao Y L.Development and application of biomedical Ti2448 alloy with high strength and low modulus[J]. Adv. Mater. Ind., 2009, (6): 10(杨锐, 郝玉琳. 高强度低模量医用钛合金Ti2448的研制与应用[J]. 新材料产业, 2009, (6): 10)
[10] Hao Y L, Yang R.High strength nano-structured Ti-Nb-Zr-Sn alloy[J]. Acta Metall. Sin., 2005, 41: 1183(郝玉琳, 杨锐. 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报, 2005, 41: 1183)
[11] Laskovski A N.Biomedical engineering, trends in materials science[M]. Rejika: InTech, 2011: 225
[12] Bai Y, Li S J, Hao Y L, et al.Electrochemical corrosion behavior of a new biomedical Ti-24Nb-4Zr-8Sn alloy in Hanks solution[J]. Acta Metall. Sin., 2012, 48: 76(白芸, 李述军, 郝玉琳等. 新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究[J]. 金属学报, 2012, 48: 76)
[13] Bai Y, Li S J, Hao Y L, et al.Electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn in phosphate buffer saline solutions[J]. Chin. J. Nonferrous Met., 2010, 20(Spec. 1): 1030(白芸, 李述军, 郝玉琳等. 磷酸盐缓冲溶液中Ti-24Nb-4Zr-8Sn合金的电化学腐蚀行为[J]. 中国有色金属学报, 2010, 20(特刊1): 1030)
[14] Li J, Li S J, Zhao X L, et al.Effect of serum protein concentration on the electrochemical behavior of the nanostructured Ti2448 alloy in artificial siliva[J]. Rare Met. Mater. Eng., 2014, 43(Suppl. 1): 156(李季, 李述军, 赵晓丽等. 蛋白含量对Ti-24Nb-4Zr-8Sn纳米晶合金在模拟唾液中电化学行为的影响[J]. 稀有金属材料与工程, 2014, 43(增刊1): 156)
[15] Guo Z, Fu J, Zhang Y Q, et al.Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails on fractured bone[J]. Mater. Sci. Eng, 2009, C29: 963
[16] Hao Y L, Li S J, Sun S Y, et al.Super-elastic titanium alloy with unstable plastic deformation[J]. Appl. Phys. Lett., 2005, 87: 090916
[17] Hao Y L, Li S J, Sun B B, et al.Ductile titanium alloy with low poisson's ratio[J]. Phys. Rev. Lett., 2007, 98: 216405
[18] Hao Y L, Li S J, Sun S Y, et al.Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications[J]. Acta Biomater., 2007, 3: 277
[19] Li S J, Cui T C, Li Y L, et al.Ultrafine-grained β-type titanium alloy with nonlinear elasticity and high ductility[J]. Appl. Phys. Lett., 2008, 92: 043128
[20] Cui J P, Hao Y L, Li S J, et al.Reversible movement of homogenously nucleated dislocations in a β-titanium alloy[J]. Phys. Rev. Lett., 2009, 102: 045503
[21] Hao Y L, Wang H L, Li T, et al.Superelasticity and tunable thermal expansion across a wide temperature range[J]. J. Mater. Sci. Technol., 2016, 32: 705
[22] Wang H L, Hao Y L, He S Y, et al.Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition[J]. Scr. Mater., 2017, 133: 70
[23] Wang H L, Shah S A A, Hao Y L, et al. Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation[J]. J. Alloys Compd., 2017, 700: 155
[24] Wang H L, Hao Y L, He S Y, et al.Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy[J]. Acta Mater., 2017, 135: 330
[25] Zhang Y W, Li S J, Obbard E G, et al.Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure[J]. Acta Mater., 2011, 59: 3081
[26] Zhang Y W.Elastic and plastic deformation of Ti2448 single crystals [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2010(张晏玮. Ti2448合金单晶的弹塑性变形行为研究 [D]. 沈阳: 中国科学院金属研究所, 2010)
[27] Yu Y N.Fundamentals of Material Science [M]. Beijing: Higher Education Press, 2006: 536(余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006: 536)
[1] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[4] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[5] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[6] MA Dexin,WANG Fu,XU Weitai,XU Wenliang,ZHAO Yunxing. Formation of Sliver Defects in Single CrystalCastings of Superalloys[J]. 金属学报, 2020, 56(3): 301-310.
[7] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[8] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[9] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[10] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[12] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[13] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[14] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[15] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
No Suggested Reading articles found!