Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 1035-1043    DOI: 10.11900/0412.1961.2021.00049
Research paper Current Issue | Archive | Adv Search |
Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface
SONG Wenshuo1, SONG Zhuman2, LUO Xuemei2, ZHANG Guangping2, ZHANG Bin1()
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface. Acta Metall Sin, 2022, 58(8): 1035-1043.

Download:  HTML  PDF(2873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The power industry is changing from rapid growth to high-quality development, and there are urgent demands for the high-quality and high-service reliability of overhead lines. Al-Mg-Si alloys are widely used in the production of long-distance overhead lines owing to their high strength-to-density ratio, good conductivity, and corrosion resistance. In the overhead line service, surface defects reduce their mechanical properties, and surface roughness greatly affects its fatigue properties. A single-strand conductor of 6101 aluminum alloy was employed to investigate the fatigue properties of the conductors with different roughness. The fatigue strength of the alloy wires decreased gradually with an increase in the surface roughness (maximum height of profile, Rz). As Rzincreased from 57.9 to 161.7 μm, the fatigue limit decreased by ~36.4%. The result indicates that an increase of Rz increases the theoretical stress concentration factor Kt, which facilitates the initiation of fatigue cracks, and the fatigue strength decreases accordingly. Furthermore, the surface roughness is equivalent to the size of the initial crack a0 = πLRz2 (L is the average value of the arerage width of profile element). A model suitable for predicting the fatigue life of conductors with different surface roughness was obtained.

Key words:  aluminum alloy conductor      surface roughness      stress concentration      fatigue life     
Received:  28 January 2021     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(51671050);National Natural Science Foundation of China(51971060)
About author:  ZHANG Bin, professor, Tel: (024)83691585, E-mail: zhangb@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00049     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/1035

Fig.1  Schematic of specimen dimension for fatigue testing (Ra—arithmetical mean deviation of the profile; unit: mm)
Fig.2  TEM image of the cross-section (a) and STEM image of the longitudinal section (b) of microstructure of the 6061 aluminum alloy conductor wire specimen, and EDS element maps of the framed area in Fig.2b (c, d)
Fig.3  Surface morphologies and surface profile curves of 6061 aluminum alloy conductor wire specimens with different roughnesses (L'—length of the statistical rough surface, Rz—the maximum height of the profile)
(a) Rz = 161.7 μm (b) Rz= 148.9 μm (c) Rz= 104.0 μm (d) Rz = 57.9 μm
SandpaperRa / μmRz / μml / μm
100#12.1161.7255
200#10.4148.9265
800#8.1104.0228
Nylon cloth5.857.9211
Table 1  Surface roughness parameters of the 6061 aluminum alloy conductor wire specimens
Fig.4  Stress amplitude-fatigue life (S-N) curves of 6061 aluminum alloy conductor wire specimens with different surface roughness (The arrow indicates that the sample is not failure under this stress amplitude and cycle)
Fig.5  SEM images of fracture surfaces of the 6061 aluminum alloy conductor wire specimens with different roughnesses
(a) Rz= 161.7 μm (b) local enlarged image of the selected area in Fig.5a (c) Rz= 57.9 μm
(d) local enlarged image of the selected area in Fig.5c (Frames in Fig.5d show the fatigue crack sources)
Fig.6  Relationship of stress amplitude and Rz and corresponding fracture morphologies (insets) of 6061 aluminum alloy conductor wire specimens with different roughnesses
(a) 104~105 cyc (b) 105~106 cyc
Fig.7  Fatigue fracture expansion areas corresponding to different roughnesses (The yellow areas are expansion areas, and green areas are instantaneous fracture areas)
Fig.8  Stress distributions at the notch with Rz = 57.9 μm (a), Rz = 104.0 μm (b), Rz= 148.9 μm (c), Rz= 161.7 μm (d), and schematic illustration of equivalent notch (e) (L is the average value of the average width of profile element)
Rz / μmσa / MPaσmax / MPaKt
57.951.876.821.48
104.051.896.961.87
148.951.8116.702.25
161.751.8122.582.37
Table 2  The theoretical stress concentration factor calculated by simulation
Fig.9  Theoretical stress concentration factors corresponding to different Rz values
Fig.10  Fatigue limit range corresponding to different crack sizes (g—slope of curve, asc—critical crack size)
Fig.11  Comparisons of calculation results and experimental results
(a) Rz= 57.9 μm (b) Rz= 104.0 μm (c) Rz= 148.9 μm (d) Rz= 161.7 μm
1 Zhao Y S, Yao H, He W, et al. Comparison between high conductivity all aluminum conductor and traditional conductor [J]. Rural Electrific., 2016, (1): 13
赵永生, 姚 辉, 何 卫 等. 高导全铝导线与传统导线的比较 [J]. 农村电气化, 2016, (1): 13
2 Jia Y J, Yang Y J, Yuan H M. Application and development of aluminum alloy conductor in China [J]. Nonferrous Met. Process., 2017, 46(3): 9
贾艳军, 杨亚军, 袁红梅. 铝合金导线在我国的应用及发展 [J]. 有色金属加工, 2017, 46(3): 9
3 Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29: 1364
doi: 10.1016/j.matdes.2007.06.004
4 Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27: 821
doi: 10.1016/j.matdes.2005.06.005
5 Hu J, Zhou T G, Li Z S, et al. Production status and development prospects of Al-Mg-Si alloy conductor [J]. Light Alloy Fabric. Technol., 2018, 46(1): 5
胡 静, 周天国, 李振山 等. Al-Mg-Si合金导线的生产现状及其发展前景 [J]. 轻合金加工技术, 2018, 46(1): 5
6 Fadel A A, Rosa D, Murça L B, et al. Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor [J]. Int. J. Fatigue, 2012, 42: 24
doi: 10.1016/j.ijfatigue.2011.03.007
7 Kalombo R B, Martínez J M G, Ferreira J L A, et al. Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: Tests and analysis [J]. Procedia Eng., 2015, 133: 223
doi: 10.1016/j.proeng.2015.12.662
8 Kalombo R B, Reinke G, Miranda T B, et al. Experimental study of the fatigue performance of overhead pure aluminium cables [J]. Procedia Struct. Integ., 2019, 19: 688
9 Adriano V S R, Martínez J M G, Ferreira J L A, et al. The influence of the fatigue process zone size on fatigue life estimations performed on aluminum wires containing geometric discontinuities using the Theory of Critical Distances [J]. Theor. Appl. Fract. Mech., 2018, 97: 265
doi: 10.1016/j.tafmec.2018.09.002
10 Ås S K, Skallerud B, Tveiten B W, et al. Fatigue life prediction of machined components using finite element analysis of surface topography [J]. Int. J. Fatigue, 2005, 27: 1590
doi: 10.1016/j.ijfatigue.2005.07.031
11 McKelvey S A, Fatemi A. Surface finish effect on fatigue behavior of forged steel [J]. Int. J. Fatigue, 2012, 36: 130
doi: 10.1016/j.ijfatigue.2011.08.008
12 Novovic D, Dewes R C, Aspinwall D K, et al. The effect of machined topography and integrity on fatigue life [J]. Int. J. Mach. Tool. Manuf., 2004, 44: 125
doi: 10.1016/j.ijmachtools.2003.10.018
13 Maiya P S. Geometrical characterization of surface roughness and its application to fatigue crack initiation [J]. Mater. Sci. Eng., 1975, 21: 57
doi: 10.1016/0025-5416(75)90198-6
14 Suresh S, Ritchie R O. A geometric model for fatigue crack closure induced by fracture surface roughness [J]. Metall. Trans., 1982, 13A: 1627
15 Haddad M HEI, Smith K N, Topper T H. Fatigue crack propagation of short cracks [J]. J. Eng. Mater. Technol., 1979, 101: 42
doi: 10.1115/1.3443647
16 Xun L I, Guan C M, Zhao P. Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces [J]. Chin. J. Aeronaut., 2018, 31: 1399
doi: 10.1016/j.cja.2017.07.013
17 Endo M, Yanase K. Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons [J]. Theor. Appl. Fract. Mech., 2014, 69: 34
doi: 10.1016/j.tafmec.2013.12.005
18 Wang J L, Zhang Y L, Zhao Q C, et al. The fatigue failure analysis and fatigue life prediction model of FV520B-I as a function of surface roughness in HCF regime [J]. J. Mater. Res., 2017, 32: 634
doi: 10.1557/jmr.2016.513
19 Newman Jr J C, Annigeri B S. Fatigue-life prediction method based on small-crack theory in an engine material [J]. J. Eng. Gas Turbines Power, 2012, 134: 032501
20 Lai J B, Huang H Z, Buising W. Effects of microstructure and surface roughness on the fatigue strength of high-strength steels [J]. Procedia Struct. Integ., 2016, 2: 1213
21 Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions [J]. Int. J. Fatigue, 1989, 11: 291
doi: 10.1016/0142-1123(89)90054-6
22 Andrews S, Sehitoglu H. A computer model for fatigue crack growth from rough surfaces [J]. Int. J. Fatigue, 2000, 22: 619
doi: 10.1016/S0142-1123(00)00018-9
23 Arola D, Williams C L. Estimating the fatigue stress concentration factor of machined surfaces [J]. Int. J. Fatigue, 2002, 24: 923
doi: 10.1016/S0142-1123(02)00012-9
24 Maiya P S, Busch D E. Effect of surface roughness on low-cycle fatigue behavior of type 304 stainless steel [J]. Metall. Trans., 1975, 6A: 1761
25 Yukitaka M, Masahiro E. Quantitative evaluation of fatigue strength of metals containing various small defects or cracks [J]. Eng. Fract. Mech., 1983, 17: 1
doi: 10.1016/0013-7944(83)90018-8
26 Newman Jr J C, Phillips E P, Swain M H. Fatigue-life prediction methodology using small-crack theory [J]. Int. J. Fatigue, 1999, 21: 109
doi: 10.1016/S0142-1123(98)00058-9
27 Ye Y L, Yang Z, Xu X X, et al. Effects of excess Mg and Si on the properties of 6101 conducting wire and its mechanism [J]. Rare Met. Mater. Eng., 2016, 45: 968
叶於龙, 杨 昭, 徐雪璇 等. 过量Mg、Si元素对6101电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45: 968
28 Murakami Y. Effect of surface roughness on fatigue strength [A]. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. 2nd Ed., London: Academic Press, 2019: 1
29 Tanaka K, Mura T. A dislocation model for fatigue crack initiation [J]. J. Appl. Mech., 1981, 48: 97
doi: 10.1115/1.3157599
30 Krausz K, Krausz A S. On the physical meaning of the Paris equation [J]. Int. J. Fract., 1988, 36(2): 23
31 Suraratchai M, Limido J, Mabru C, et al. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy [J]. Int. J. Fatigue, 2008, 30: 2119
doi: 10.1016/j.ijfatigue.2008.06.003
32 Wang J L, Zhang Y L, Sun Q C, et al. Giga-fatigue life prediction of FV520B-I with surface roughness [J]. Mater. Des., 2016, 89: 1028
doi: 10.1016/j.matdes.2015.10.104
33 Zhao Y, Wang Q, Zhang W. Aluminum alloy fatigue life forecast based on linear elastic fracture mechanics [J]. Rallway Qual. Control, 2016, 44(8): 40
赵 扬, 王 强, 张 慰. 基于线弹性断裂力学的铝合金疲劳寿命预测 [J]. 铁道技术监督, 2016, 44(8): 40
34 Murakami Y. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals [J]. Key Eng. Mater., 1991, 51-52: 37
doi: 10.4028/www.scientific.net/KEM.51-52.37
35 Liu Y M, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution [J]. Int. J. Fatigue, 2009, 31: 476
doi: 10.1016/j.ijfatigue.2008.06.005
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[3] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[4] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[5] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[6] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[7] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[8] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[9] Yajuan ZHANG, Haibin WANG, Xiaoyan SONG, Zuoren NIE. Preparation and Performance of Spherical Ni Powder for SLM Processing[J]. 金属学报, 2018, 54(12): 1833-1842.
[10] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[11] Bin WANG,Liangyin XIONG,Shi LIU. MgO SECONDARY ELECTRON EMISSION FILM PREPARED BY RADIO-FREQUENCY REACTIVE SPUTERRING[J]. 金属学报, 2016, 52(1): 10-16.
[12] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[13] XIONG Ying CHENG Lixia . MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(12): 1446-1452.
[14] CHEN Lijia WANG Xin ZHI Ying XU Yanwu. LOW--CYCLE FATIGUE BEHAVIOR OF AS--EXTRUDED Mg--x%Al--3%Ni ALLOYS[J]. 金属学报, 2009, 45(7): 856-860.
[15] YANG Zhenguo; ZHANG Jiming; LI Shouxin; LI Guangyi; WANG Qingyuan HUI Weijun; WENG Yuqing. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition[J]. 金属学报, 2005, 41(11): 1136-1142 .
No Suggested Reading articles found!