Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 905-915    DOI: 10.11900/0412.1961.2016.00053
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY
Jinhu ZHANG1,Dongsheng XU1(),Yunzhi WANG2,Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 The Ohio State University, Columbus, OH 43210, USA
Cite this article: 

Jinhu ZHANG,Dongsheng XU,Yunzhi WANG,Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY. Acta Metall Sin, 2016, 52(8): 905-915.

Download:  HTML  PDF(986KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys are widely applied in aerospace, chemical and other related industries. The α+β alloys may obtain various microstructures and mechanical properties simply by varying their thermomechanical processing. Ti-6Al-4V alloy is the most common α+β titanium alloy. Its strength, ductility, fracture toughness and fatigue properties depend strongly on the microstructure especially texture. The understanding of the formation mechanisms of α micro-texture during processing is necessary for the optimization of the mechanical properties. In this work, the nucleation of α precipitates and micro-texture formation process under the influence of dislocations during the βα transformation in Ti-6Al-4V alloy was simulated by phase field method. The stress field of an infinite straight dislocation was calculated by Willis-Steeds-Lothe method and used as input of the phase field model. It was shown that the normal stress component S33 plays a dominant role in α variants nucleation in the presence of edge dislocation, while the shear stress component S23 is the most important one for screw dislocation. The effect of edge dislocation on α variant selection is generally stronger than that of screw. V1 and V7 are the main variants selected by the edge dislocation while V7, V10 and V12 dominate around the screw dislocation, with V1/V7, V1/V4/V6 being the main variant cluster types around the edge dislocation, and V7/V10/V12 being the primary one for the screw dislocation. In a system with the presence of dislocations in the parent phase, the precipitate microstructure is determined by the combined effect of elastic interactions between the dislocation and different variants of a low symmetry precipitate phase, and elastic interactions among different variants. Variants with interfaces of relatively high energy may appear because of variants selection by dislocations.

Key words:  Ti-6Al-4V alloy      dislocation      phase field simulation      variant selection      micro-texture     
Received:  02 February 2016     
Fund: Supported by National Basic Research Program of China (Nos.2006CB605104 and 2011CB606404) and National Natural Science Foundation of China (Nos.51101158 and 51171195)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00053     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/905

Fig.1  Schematics of simulation boxes containing an infinite straight edge (a) or screw (b) dislocation (b—Burgers vector)
Fig.2  Stress field around an infinite straight edge dislocation (S11, S22 and S33 are normal stress components; S23 is shear stress component) (a) S11 (b) S22 (c) S33 (d) S23
Fig.3  Morphology (a) and enlarged image (b) of α variants along edge dislocation line at τ=104 (τ is reduced time), and {0001} (c) and {1120} (d) pole figures of α micro-texture
Fig.4  Stress field around an infinite straight screw dislocation (S12 and S13 are shear stress components) (a) S11 (b) S22 (c) S33 (d) S12 (e) S13 (f) S23
Fig.5  Morphology (a) and enlarged image (b) of α variants along screw dislocation line at τ=104, and {0001} (c) and {1120} (d) pole figures of α micro-texture
Fig.6  Minimum of interaction energy between different α variants and an infinite straight edge (a) or screw (b) dislocation
Fig.7  Average values of elastic interaction energies ? (a) and Bˉ1p (b) ( p=1, Bˉ7p, 12) between V1, V7 and other variants, respectively
Fig.8  Contributions of the major stress components to the minimum of interaction energy between edge dislocation and V1 (a) or V7 (b) in Fig.6a, and between screw dislocation and V7 (c) or V10 (d) in Fig.6b
[1] Furuhara T, Maki T.Mater Sci Eng, 2001; A312: 145
[2] Gey N, Humbert M, Philippe M J, Combres Y.Mater Sci Eng, 1997; A230: 68
[3] Feng Z Q, Yang Y Q, Huang B, Luo X, Li M H, Han M, Fu M S.Acta Mater, 2011; 59: 2412
[4] van Bohemen S M C, Kamp A, Petrov R H, Kestens L A I, Sietsma J.Acta Mater, 2008; 56: 5907
[5] Bhattacharyya D, Viswanathan G B, Denkenberger R, Furrer D, Fraser H L.Acta Mater, 2003; 51: 4679
[6] Bhattacharyya D, Viswanathan G B, Fraser H L.Acta Mater, 2007; 55: 6765
[7] Shi R, Wang Y.Acta Mater, 2013; 61: 6006
[8] Glavicic M, Goetz R, Barker D, Shen G, Furrer D, Woodfield A, Semiatin S.Metall Mater Trans, 2008; 39A: 887
[9] Bate P, Hutchinson B.Acta Mater, 2000; 48: 3183
[10] Germain L, Gey N, Humbert M, Vo P, Jahazi M, Bocher P.Acta Mater, 2008; 56: 4298
[11] Banerjee D, Williams J C.Acta Mater, 2013; 61: 844
[12] Germain L, Gey N, Humbert M, Bocher P, Jahazi M.Acta Mater, 2005; 53: 3535
[13] Humbert M, Germain L, Gey N, Bocher P, Jahazi M.Mater Sci Eng, 2006; A430: 157
[14] Thomas G, Nutting J.The Mechanism of Phase Transformations in Metals .London: Institute of Metals, 1956: 57
[15] Xu D S, Wang H, Teng C Y, Zhang J H, Wu H N, Bai C G, Yang R.e-Sci Technol Appl, 2015; 6(3): 14
[15] (徐东生, 王皞, 滕春禹, 张金虎, 武鹤楠, 柏春光, 杨锐. 科研信息化技术与应用, 2015; 6(3): 14)
[16] Teng C Y, Zhou N, Wang Y, Xu D S, Du A, Wen Y H, Yang R.Acta Mater, 2012; 60: 6372
[17] Teng C Y, Du A, Xu D S, Wang Y, Yang R.Intermetallics, 2015; 65: 1
[18] Yin J, Barnett D M, Cai W.Model Simul Mater Sci Eng, 2010; 18: 045013
[19] Ledbetter H, Ogi H, Kai S, Kim S, Hirao M.J Appl Phys, 2004; 95: 4642
[20] Burgers W G.Physica, 1934; 1: 561
[21] Geng F, Niinomi M, Nakai M.Mater Sci Eng, 2011; A528: 5435
[22] Savage M, Tatalovich J, Mills M.Philos Mag, 2004; 84: 1127
[23] Khachaturyan A G.Theory of Structural Transformations in Solids. New York: John Wiley & Sons, Inc, 1983: 198
[24] Wang Y U, Jin Y M, Cuiti?o A M, Khachaturyan A G.Acta Mater, 2001; 49: 1847
[25] Qiu D, Shi R, Zhang D, Lu W, Wang Y.Acta Mater, 2015; 88: 218
[26] Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F, Mills M J, Wang Y,Acta Mater, 2014; 65: 270
[27] Shi R, Ma N, Wang Y.Acta Mater, 2012; 60: 4172
[28] Yang M, Wang G, Teng C Y, Xu D S, Zhang J, Yang R, Wang Y.Acta Metall Sin, 2012; 48: 148
[28] (杨梅, 王刚, 滕春禹, 徐东生, 张鉴, 杨锐, 王云志. 金属学报, 2012; 48: 148)
[29] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y.Acta Mater, 2009; 57: 316
[30] Wang Y, Chen L Q. Simulation of Microstructural Evolution Using the Field Method. New York: John Wiley & Sons, Inc, 2000: 2a3.1
[31] Zhang J H, Teng C Y, Yang M, Xu D S, Wang Y, Yang R.Chin Nonferrous Met, 2013; 23(suppl): s296
[31] (张金虎, 滕春禹, 杨梅, 徐东生, 王云志, 杨锐. 中国有色金属学报, 2013; 23(特刊): s296)
[32] Hull D, Bacon D J.Introduction to Dislocations. 5th Ed., Oxford: Elsevier Ltd, 2011: 63
[33] Furuhara T, Nakamori H, Maki T.Mater Trans, 1992; 33: 585
[34] Ba?tecká J.Czech J Phys, 1965; 15B: 595
[35] Wang S C, Aindow M, Starink M J.Acta Mater, 2003; 51: 2485
[36] Heo T W, Bhattacharyya S, Chen L Q.Philos Mag, 2013; 93: 1468
[37] Wang S, Starink M, Ubhi H, Li W.Rev Adv Mater Sci, 2012; 32: 47
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[3] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[4] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[14] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[15] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
No Suggested Reading articles found!