|
|
INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY |
Jinhu ZHANG1,Dongsheng XU1( ),Yunzhi WANG2,Rui YANG1 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 The Ohio State University, Columbus, OH 43210, USA |
|
Cite this article:
Jinhu ZHANG,Dongsheng XU,Yunzhi WANG,Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY. Acta Metall Sin, 2016, 52(8): 905-915.
|
Abstract Titanium alloys are widely applied in aerospace, chemical and other related industries. The α+β alloys may obtain various microstructures and mechanical properties simply by varying their thermomechanical processing. Ti-6Al-4V alloy is the most common α+β titanium alloy. Its strength, ductility, fracture toughness and fatigue properties depend strongly on the microstructure especially texture. The understanding of the formation mechanisms of α micro-texture during processing is necessary for the optimization of the mechanical properties. In this work, the nucleation of α precipitates and micro-texture formation process under the influence of dislocations during the β→α transformation in Ti-6Al-4V alloy was simulated by phase field method. The stress field of an infinite straight dislocation was calculated by Willis-Steeds-Lothe method and used as input of the phase field model. It was shown that the normal stress component S33 plays a dominant role in α variants nucleation in the presence of edge dislocation, while the shear stress component S23 is the most important one for screw dislocation. The effect of edge dislocation on α variant selection is generally stronger than that of screw. V1 and V7 are the main variants selected by the edge dislocation while V7, V10 and V12 dominate around the screw dislocation, with V1/V7, V1/V4/V6 being the main variant cluster types around the edge dislocation, and V7/V10/V12 being the primary one for the screw dislocation. In a system with the presence of dislocations in the parent phase, the precipitate microstructure is determined by the combined effect of elastic interactions between the dislocation and different variants of a low symmetry precipitate phase, and elastic interactions among different variants. Variants with interfaces of relatively high energy may appear because of variants selection by dislocations.
|
Received: 02 February 2016
|
Fund: Supported by National Basic Research Program of China (Nos.2006CB605104 and 2011CB606404) and National Natural Science Foundation of China (Nos.51101158 and 51171195) |
[1] | Furuhara T, Maki T.Mater Sci Eng, 2001; A312: 145 | [2] | Gey N, Humbert M, Philippe M J, Combres Y.Mater Sci Eng, 1997; A230: 68 | [3] | Feng Z Q, Yang Y Q, Huang B, Luo X, Li M H, Han M, Fu M S.Acta Mater, 2011; 59: 2412 | [4] | van Bohemen S M C, Kamp A, Petrov R H, Kestens L A I, Sietsma J.Acta Mater, 2008; 56: 5907 | [5] | Bhattacharyya D, Viswanathan G B, Denkenberger R, Furrer D, Fraser H L.Acta Mater, 2003; 51: 4679 | [6] | Bhattacharyya D, Viswanathan G B, Fraser H L.Acta Mater, 2007; 55: 6765 | [7] | Shi R, Wang Y.Acta Mater, 2013; 61: 6006 | [8] | Glavicic M, Goetz R, Barker D, Shen G, Furrer D, Woodfield A, Semiatin S.Metall Mater Trans, 2008; 39A: 887 | [9] | Bate P, Hutchinson B.Acta Mater, 2000; 48: 3183 | [10] | Germain L, Gey N, Humbert M, Vo P, Jahazi M, Bocher P.Acta Mater, 2008; 56: 4298 | [11] | Banerjee D, Williams J C.Acta Mater, 2013; 61: 844 | [12] | Germain L, Gey N, Humbert M, Bocher P, Jahazi M.Acta Mater, 2005; 53: 3535 | [13] | Humbert M, Germain L, Gey N, Bocher P, Jahazi M.Mater Sci Eng, 2006; A430: 157 | [14] | Thomas G, Nutting J.The Mechanism of Phase Transformations in Metals .London: Institute of Metals, 1956: 57 | [15] | Xu D S, Wang H, Teng C Y, Zhang J H, Wu H N, Bai C G, Yang R.e-Sci Technol Appl, 2015; 6(3): 14 | [15] | (徐东生, 王皞, 滕春禹, 张金虎, 武鹤楠, 柏春光, 杨锐. 科研信息化技术与应用, 2015; 6(3): 14) | [16] | Teng C Y, Zhou N, Wang Y, Xu D S, Du A, Wen Y H, Yang R.Acta Mater, 2012; 60: 6372 | [17] | Teng C Y, Du A, Xu D S, Wang Y, Yang R.Intermetallics, 2015; 65: 1 | [18] | Yin J, Barnett D M, Cai W.Model Simul Mater Sci Eng, 2010; 18: 045013 | [19] | Ledbetter H, Ogi H, Kai S, Kim S, Hirao M.J Appl Phys, 2004; 95: 4642 | [20] | Burgers W G.Physica, 1934; 1: 561 | [21] | Geng F, Niinomi M, Nakai M.Mater Sci Eng, 2011; A528: 5435 | [22] | Savage M, Tatalovich J, Mills M.Philos Mag, 2004; 84: 1127 | [23] | Khachaturyan A G.Theory of Structural Transformations in Solids. New York: John Wiley & Sons, Inc, 1983: 198 | [24] | Wang Y U, Jin Y M, Cuiti?o A M, Khachaturyan A G.Acta Mater, 2001; 49: 1847 | [25] | Qiu D, Shi R, Zhang D, Lu W, Wang Y.Acta Mater, 2015; 88: 218 | [26] | Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F, Mills M J, Wang Y,Acta Mater, 2014; 65: 270 | [27] | Shi R, Ma N, Wang Y.Acta Mater, 2012; 60: 4172 | [28] | Yang M, Wang G, Teng C Y, Xu D S, Zhang J, Yang R, Wang Y.Acta Metall Sin, 2012; 48: 148 | [28] | (杨梅, 王刚, 滕春禹, 徐东生, 张鉴, 杨锐, 王云志. 金属学报, 2012; 48: 148) | [29] | Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y.Acta Mater, 2009; 57: 316 | [30] | Wang Y, Chen L Q. Simulation of Microstructural Evolution Using the Field Method. New York: John Wiley & Sons, Inc, 2000: 2a3.1 | [31] | Zhang J H, Teng C Y, Yang M, Xu D S, Wang Y, Yang R.Chin Nonferrous Met, 2013; 23(suppl): s296 | [31] | (张金虎, 滕春禹, 杨梅, 徐东生, 王云志, 杨锐. 中国有色金属学报, 2013; 23(特刊): s296) | [32] | Hull D, Bacon D J.Introduction to Dislocations. 5th Ed., Oxford: Elsevier Ltd, 2011: 63 | [33] | Furuhara T, Nakamori H, Maki T.Mater Trans, 1992; 33: 585 | [34] | Ba?tecká J.Czech J Phys, 1965; 15B: 595 | [35] | Wang S C, Aindow M, Starink M J.Acta Mater, 2003; 51: 2485 | [36] | Heo T W, Bhattacharyya S, Chen L Q.Philos Mag, 2013; 93: 1468 | [37] | Wang S, Starink M, Ubhi H, Li W.Rev Adv Mater Sci, 2012; 32: 47 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|