Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 851-858    DOI: 10.11900/0412.1961.2015.00600
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY
Siqian ZHANG1,Dong WANG2(),Di WANG2,Jianqiang PENG3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
3 Harbin Turbine Co. Ltd., Harbin 150046, China.
Download:  HTML  PDF(1805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Up to now, considerable effort has been expended in attempts to investigate the influences of Re on Ni-based single crystal superalloys. However, few study had elucidated the influences of Re on carbide, boride and grain boundary. Therefore, the influence of a 2%Re (mass fraction) addition on the as-cast and heat-treated microstructures of a Ni-based directionally solidified superalloy was investigated by comparison with Re-free alloy using SEM, EPMA and TEM. The results show that Re accelerates the precipitation of μ phase in the periphery of eutectic and at grain boundary for as-cast microstructure. After heat treatment, Re also accelerates the precipitation of phase in the vicinity of primary MC carbide and at grain boundary. For 0Re alloy, there are small number of M6C carbide in the vicinity of primary MC carbide and M23(C, B)6 boro-carbide at grain boundary. For 2Re alloy, a large amount of blocky μ phase enveloped by thick γ′-film is found in the vicinity of primary MC carbide and at grain boundary. Enrichment of B along the grain boundary is observed in 0Re alloy. On the contrary, relatively uniform distribution of B is found in 2Re alloy. The precipitation mechanism of μ phase during the process of heat treatment is also analyzed.

Key words:  Ni-based superalloy      directional solidification      Re      μ phase      grain boundary      carbide     
Received:  19 November 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51101160 and 51501117), National Key Foundation for Exploring Scientific Instrument (No.2012YQ22023304) and Liaoning Provincial Department of Education Project (No.L2014050)

Cite this article: 

Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY. Acta Metall Sin, 2016, 52(7): 851-858.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00600     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/851

Alloy Re Cr Co Mo W Al Ti Nb Ta C B Ni
0Re 0 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
2Re 2 8 9 1 6 5 2 1 2 0.1 0.01 Bal.
Table 1  Nominal compositions of 0Re and 2Re columnar grain superalloys
Fig.1  Precipitates at periphery region of eutectic(a) SEM image of 0Re alloy (b) SEM image of 2Re alloy (c) TEM image and corresponding SAED pattern (inset) of 0Re alloy (d) TEM image and corresponding SAED patterns (insets) of 2Re alloy
Fig.2  Microstructures of grain boundary (GB) in as-cast alloy(a) SEM image of 0Re alloy (b) SEM image of 2Re alloy (c) TEM image of 0Re alloy (d) TEM image and corresponding SAED pattern (inset) of 2Re alloy
Fig.3  Microstructures of interdendritic region(a) SEM image of as-cast 0Re alloy (b) SEM image of as-cast 2Re alloy (c) SEM image of heat-treated 0Re alloy (d) SEM image of heat-treated 2Re alloy(e) TEM image and corresponding SAED pattern (inset) of heat-treated 0Re alloy(f) TEM image and corresponding SAED pattern (inset) of heat-treated 2Re alloy
Fig.4  Microstructures of heat-treated GBs(a) SEM image of 0Re alloy (b) SEM image of 2Re alloy(c) TEM image and corresponding SAED pattern (inset) of 0Re alloy(d) TEM image and corresponding SAED pattern (inset) of 2Re alloy
Fig.5  EPMA maps of B in 0Re (a) and 2Re (b) alloys after heat treatment (Insets show that SEM images at GBs of 0Re and 2Re alloys, and arrows show the location of GB)
Table 2  Chemical compositions of phases in 0Re and 2Re alloys by EPMA
Fig.6  SEM images of interdendritic region near the blocky MC carbide of 2Re alloy aging at 1110 ℃ for different times after solution treatment (a) 0 min (b) 5 min (c) 10 min (d) 20 min
Fig.7  SEM images of grain boundary region of 2Re alloy aging at 1110 ℃ for different times after solution treatment (a) 0 min (b) 5 min (c) 10 min (d) 20 min
Fig.8  Formation of the stacking fault in the vicinity of the MC carbide of 2Re alloy after solution treatment
[1] Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 35
[2] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G.J Mater Eng Perform, 1993; 2: 481
[3] Ross E W, O'Hara K S. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 257
[4] Cetel A D, Duhl D N.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 287
[5] Bürgel R, Grossmann J, Lüseberink O, Mughrabi H, Pyczak F, Singer R F, Volek A.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 25
[6] Harris K, Erickson G L, Schwer R E.In: Gell M, Kortovich C S, Bricknell R H, Kent W B, Radovich J F eds., Superalloys 1984, Warrendale, PA: The Minerals, Materials and Metals Society, 1984: 221
[7] Harris K, Erickon G L, Sikkenga S L, Kubarych K G.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 297
[8] Chen R Z. J Aero Mater, 1993; (1): 47
[8] (陈荣章. 航空材料学报, 1993; (1): 47)
[9] Blavette D, Caron P, Khan T.Scr Mater, 1986; 20: 1395
[10] Warren P J, Cerezo A, Smith G D W.Mater Sci Eng, 1998; A250: 88
[11] Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C.Acta Mater, 2010; 58: 931
[12] Wanderka N, Glatzel U.Mater Sci Eng, 1995; A203: 69
[13] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D, R?sler J.Scr Mater, 2002; 46: 235
[14] Epishin A, Bruckner U, Portella P D, Link T.Scr Mater, 2003; 48: 455
[15] Fu C L, Reed R, Janotti A, Krcmar M.In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: The Minerals, Materials and Metals Society, 2004: 867
[16] Luo Y S, Li J R, Liu S Z, Sun F L, Han X M, Cao C X.Chin J Nonferrous Met, 2005; 15: 1655
[16] (骆宇时, 李嘉荣, 刘世忠, 孙凤礼, 韩秀梅, 曹春晓. 中国有色金属学报, 2005; 15: 1655)
[17] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F.Mater Sci Eng, 2014; A603: 84
[18] Zhang Y D, Yang Z G, Zhang C, Lan H.Chin J Aero, 2010; 23: 370
[19] Wang M G, Tian S G, Yu H C, Yu X F, Qian B J.J Aero Mater, 2009; 29(4): 98
[19] (王明罡, 田素贵, 于慧臣, 于兴福, 钱本江. 航空材料学报, 2009; 29(4): 98)
[20] Li J R, Tang D Z, Chen R Z.J Mater Eng, 1997; (8): 3
[20] (李嘉荣, 唐定中, 陈荣章. 材料工程, 1997; (8): 3)
[21] Darolia R, Lahrman D F, Field R D.In: Reichman S, Duhl D N, Maurer S, Antolovich S, Lund C eds., Superalloys 1988, Warrendale, PA: The Minerals, Materials and Metals Society, 1988: 255
[22] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 9
[23] Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale, PA: The Minerals, Materials and Metals Society, 1996: 27
[24] Pollock T M, Murphy W H, Goldman E H, Uram D L, Tu J S.In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale, PA: The Minerals, Materials and Metals Society, 1992: 125
[25] Kong Y H, Chen Q Z.Mater Sci Eng, 2004; A366: 135
[1] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[4] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[5] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[6] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[7] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[8] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[9] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[10] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[13] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[14] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[15] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
No Suggested Reading articles found!