Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 859-865    DOI: 10.11900/0412.1961.2015.00619
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy
Liangshun LUO1(),Tong LIU1,Yanning ZHANG2,Yanqing SU1,Jingjie GUO1,Hengzhi FU1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China
Cite this article: 

Liangshun LUO,Tong LIU,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy. Acta Metall Sin, 2016, 52(7): 859-865.

Download:  HTML  PDF(1798KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The intermetallic compound has been widely introduced in alloys as a reinforced phase due to its high strength, high hardness and enhanced heat stability. The size, morphology, distribution and volume fraction of these intermetallic compounds affect the mechanical properties of materials significantly. In this work, the microstructures evolution and growth behoviors of primary intermetallic Al3Y phase have been investigated in directionally solidified Al-15%Y (mass fraction) hypereutectic alloy at a wide range of pulling rates (1~100 μm/s). The as-cast Al-15%Y alloy is composed of primary intermetallic Al3Y phase and Al3Y/Al eutectic structure. At relatively low pulling rates (1~5 μm/s), primary Al3Y phase exhibits irregular and having a branching structure on the top of the specimens. Primary Al3Y phase also precipitates in a faceted growth with sharp edges and corners. As the pulling rate increases, the morphologies of Al3Y phase transit to elongated prism. Al3Y phase distributes dispersively in the eutectic structure at a higher pulling rate, presenting a crossing shape with two prisms crossed vertically. Further increasing the growth rate to 100 μm/s, the cross morphology such as two six prismatic vertical cross structure of primary Al3Y appear, similar to the growth in the form of dendrites. During the increase of pulling rates, the leading-phase at solid-liquid interface appear gradually, and the growth distance of primary phase increases with the pulling rates increase.

Key words:  Al-Y hypereutectic alloy      directional solidification      intermetallic compound Al3Y      microstructure evolution     
Received:  03 December 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51425402, 51371066 and 51331005)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00619     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/859

Fig.1  Schematic of the Bridgman solidification furnace used in the present work
Fig.2  Low (a) and locally high (b) magnified SEM-BSE images of as-cast Al-15%Y hypereutectic alloy
Fig.3  Low (a~c) and locally high (a1~a3, b1~b3, c1~c3) magnified OM images show the microstructure evolutions of directionally solidified Al-15%Y hypereutectic alloy at pulling rates V=1 μm/s (a, a1~a3), V=3 μm/s (b, b1~b3), V=5 μm/s (c, c1~c3) under temperature gradient G=20 K/mm (Dash lines in Figs.3a1, b1, c1 indicate solid/liquid interfaces)
Fig.4  Low (a~c) and locally high (a1~a3, b1~b3, c1~c3) magnified OM images show the microstructure evolutions of directionally solidified Al-15%Y hypereutectic alloy at V=10 μm/s (a, a1~a3), V=20 μm/s (b, b1~b3), V=100 μm/s (c, c1~c3) under G= 20 K/mm (Dash lines in Figs.4a1, b1, c1 indicate solid/liquid interfaces)
Fig.5  Low (a) and locally high (b) magnified OM images of transverse sections of Al-15%Y hypereutectic alloy at V=20 μm/s and G=20 K/mm
Fig.6  OM images of the solid/liquid interfaces in directionally solidified Al-15%Y hypereutectic alloy at V=1 μm/s (a), V=3 μm/s (b), V=5 μm/s (c), V=10 μm/s (d), V=20 μm/s (e) and V=100 μm/s (f) under G=20 K/mm (Dash lines indicate solid/liquid interfaces)
Fig.7  Longitudinal (a~c) and transverse (d~f) SEM images of Al3Y in directionally solidified Al-15%Y hypereutectic alloy at V=1 μm/s (a, d), V=20 μm/s (b, e) and 100 μm/s (c, f) under G=20 K/mm
[1] Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification. Beijing: Higher Education Press, 2010: 28
[1] (Kurz W, Fisher D J 著, 李建国, 胡侨丹译. 凝固原理. 北京: 高等教育出版社, 2010: 28)
[2] Bei H, George E P, Kenik E A, Pharr G M.Acta Mater, 2003; 51: 6241
[3] Mori N, Kuroki T, Ogi K.J Cryst Growth, 2001; 229: 335
[4] Kim K H, Nam N D, Kim J G, Shin K S, Jung H C.Intermetallics, 2011; 19: 1831
[5] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[6] Kang H J, Wu S P, Li X Z, Guo J J, Wang Y.Mater Sci Eng, 2011; A528: 5585
[7] Gao K, Li S M, Fu H Z.Acta Metall Sin, 2014; 50: 962
[7] (高卡, 李双明, 傅恒志. 金属学报, 2014; 50: 962)
[8] Gao K, Li S M, Xu L, Fu H Z.J Cryst Growth, 2014; 394: 89
[9] Yang L Y, Li S M, Chang X Q, Zhong H, Fu H Z.Acta Mater, 2015; 97: 269
[10] Liu D M, Li X Z, Su Y Q, Luo L S, Guo J J, Fu H Z.Intermeta-llics, 2012; 26: 131
[11] Kang H J, Li X Z, Su Y Q, Liu D M, Guo J J, Fu H Z.Intermeta-llics, 2012; 23: 32
[12] Kang H J, Wang T M, Lu Y P, Jie J C, Li X Z, Su Y Q, Guo J J.J Mater Res, 2014; 29: 2547
[13] Wang R Y, Lu W H, Hogan L M.J Cryst Growth, 1999; 207: 43
[14] Kang H J, Wang T M, Li X Z, Su Y Q, Guo J J, Fu H Z.J Mater Res, 2014; 29: 1257
[15] Liu D M.PhD Dissertation, Harbin Institute of Technology, 2012
[15] (刘冬梅. 哈尔滨工业大学博士学位论文, 2012)
[16] Wang F X, Luo L S, Wang L, Zhang D H, Li X Z, Su Y Q, Guo J J, Fu H Z.Acta Metall Sin, 2016; 52: 361
[16] (王富鑫, 骆良顺, 王亮, 张东徽, 李新中, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2016; 52: 361)
[17] Zhang C, Wang Q, Gao A, Liu T, Lou C S, He J C.Acta Metall Sin, 2008; 44: 713
[17] (张超, 王强, 高翱, 刘铁, 娄长胜, 赫冀成. 金属学报, 2008; 44: 713)
[18] Li G F, Zhang X M, Zhu H F.J Aero Mater, 2010; 30: 1
[18] (李国锋, 张新明, 朱航飞. 航空材料学报, 2010; 30: 1)
[19] Wang J H, Yi D Q, Lu B, Liu S, Cao Y.J Chin Rare Earth Soc, 2002; 20(2): 150
[19] (王建华, 易丹青, 卢斌, 刘沙, 曹昱. 中国稀土学报, 2002; 20(2): 150)
[20] Liu S H, Du Y, Xu H H, He C Y, Schuster J C.J Alloys Compd, 2006; 414: 60
[21] Tiller W A, Jackson K A, Rutter J W, Chalmers B.Acta Metall, 1953; 1: 428
[22] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 225
[22] (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 225)
[23] Liu S H, Du Y, Chen H L.Calphad, 2006; 30: 334
[24] Asta M, Bechermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R.Acta Mater, 2009; 57: 941
[25] Kang H J.PhD Dissertation, Harbin Institute of Technology, 2013
[25] (康慧君. 哈尔滨工业大学博士学位论文, 2013)
[26] Cabrera N, Vermilyea D, Doremus R, Roberts B, Turnbull D.Growth and Perfection of Crystals. New York: Wiley, 1958: 393
[27] Hu H Q. Metal Solidification Principle.Beijing: Machine Industry Press, 2010: 93
[27] (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2010: 93)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[6] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[11] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[12] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[13] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[14] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[15] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
No Suggested Reading articles found!