|
|
MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy |
Liangshun LUO1( ),Tong LIU1,Yanning ZHANG2,Yanqing SU1,Jingjie GUO1,Hengzhi FU1 |
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China 2 Shenyang Liming Aero-Engine Group Corporation LTD, Shenyang 110043, China |
|
Cite this article:
Liangshun LUO,Tong LIU,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy. Acta Metall Sin, 2016, 52(7): 859-865.
|
|
Abstract The intermetallic compound has been widely introduced in alloys as a reinforced phase due to its high strength, high hardness and enhanced heat stability. The size, morphology, distribution and volume fraction of these intermetallic compounds affect the mechanical properties of materials significantly. In this work, the microstructures evolution and growth behoviors of primary intermetallic Al3Y phase have been investigated in directionally solidified Al-15%Y (mass fraction) hypereutectic alloy at a wide range of pulling rates (1~100 μm/s). The as-cast Al-15%Y alloy is composed of primary intermetallic Al3Y phase and Al3Y/Al eutectic structure. At relatively low pulling rates (1~5 μm/s), primary Al3Y phase exhibits irregular and having a branching structure on the top of the specimens. Primary Al3Y phase also precipitates in a faceted growth with sharp edges and corners. As the pulling rate increases, the morphologies of Al3Y phase transit to elongated prism. Al3Y phase distributes dispersively in the eutectic structure at a higher pulling rate, presenting a crossing shape with two prisms crossed vertically. Further increasing the growth rate to 100 μm/s, the cross morphology such as two six prismatic vertical cross structure of primary Al3Y appear, similar to the growth in the form of dendrites. During the increase of pulling rates, the leading-phase at solid-liquid interface appear gradually, and the growth distance of primary phase increases with the pulling rates increase.
|
Received: 03 December 2015
|
Fund: Supported by National Natural Science Foundation of China (Nos.51425402, 51371066 and 51331005) |
[1] | Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification. Beijing: Higher Education Press, 2010: 28 | [1] | (Kurz W, Fisher D J 著, 李建国, 胡侨丹译. 凝固原理. 北京: 高等教育出版社, 2010: 28) | [2] | Bei H, George E P, Kenik E A, Pharr G M.Acta Mater, 2003; 51: 6241 | [3] | Mori N, Kuroki T, Ogi K.J Cryst Growth, 2001; 229: 335 | [4] | Kim K H, Nam N D, Kim J G, Shin K S, Jung H C.Intermetallics, 2011; 19: 1831 | [5] | Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085 | [6] | Kang H J, Wu S P, Li X Z, Guo J J, Wang Y.Mater Sci Eng, 2011; A528: 5585 | [7] | Gao K, Li S M, Fu H Z.Acta Metall Sin, 2014; 50: 962 | [7] | (高卡, 李双明, 傅恒志. 金属学报, 2014; 50: 962) | [8] | Gao K, Li S M, Xu L, Fu H Z.J Cryst Growth, 2014; 394: 89 | [9] | Yang L Y, Li S M, Chang X Q, Zhong H, Fu H Z.Acta Mater, 2015; 97: 269 | [10] | Liu D M, Li X Z, Su Y Q, Luo L S, Guo J J, Fu H Z.Intermeta-llics, 2012; 26: 131 | [11] | Kang H J, Li X Z, Su Y Q, Liu D M, Guo J J, Fu H Z.Intermeta-llics, 2012; 23: 32 | [12] | Kang H J, Wang T M, Lu Y P, Jie J C, Li X Z, Su Y Q, Guo J J.J Mater Res, 2014; 29: 2547 | [13] | Wang R Y, Lu W H, Hogan L M.J Cryst Growth, 1999; 207: 43 | [14] | Kang H J, Wang T M, Li X Z, Su Y Q, Guo J J, Fu H Z.J Mater Res, 2014; 29: 1257 | [15] | Liu D M.PhD Dissertation, Harbin Institute of Technology, 2012 | [15] | (刘冬梅. 哈尔滨工业大学博士学位论文, 2012) | [16] | Wang F X, Luo L S, Wang L, Zhang D H, Li X Z, Su Y Q, Guo J J, Fu H Z.Acta Metall Sin, 2016; 52: 361 | [16] | (王富鑫, 骆良顺, 王亮, 张东徽, 李新中, 苏彦庆, 郭景杰, 傅恒志. 金属学报, 2016; 52: 361) | [17] | Zhang C, Wang Q, Gao A, Liu T, Lou C S, He J C.Acta Metall Sin, 2008; 44: 713 | [17] | (张超, 王强, 高翱, 刘铁, 娄长胜, 赫冀成. 金属学报, 2008; 44: 713) | [18] | Li G F, Zhang X M, Zhu H F.J Aero Mater, 2010; 30: 1 | [18] | (李国锋, 张新明, 朱航飞. 航空材料学报, 2010; 30: 1) | [19] | Wang J H, Yi D Q, Lu B, Liu S, Cao Y.J Chin Rare Earth Soc, 2002; 20(2): 150 | [19] | (王建华, 易丹青, 卢斌, 刘沙, 曹昱. 中国稀土学报, 2002; 20(2): 150) | [20] | Liu S H, Du Y, Xu H H, He C Y, Schuster J C.J Alloys Compd, 2006; 414: 60 | [21] | Tiller W A, Jackson K A, Rutter J W, Chalmers B.Acta Metall, 1953; 1: 428 | [22] | Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 225 | [22] | (傅恒志, 郭景杰, 刘林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 225) | [23] | Liu S H, Du Y, Chen H L.Calphad, 2006; 30: 334 | [24] | Asta M, Bechermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R.Acta Mater, 2009; 57: 941 | [25] | Kang H J.PhD Dissertation, Harbin Institute of Technology, 2013 | [25] | (康慧君. 哈尔滨工业大学博士学位论文, 2013) | [26] | Cabrera N, Vermilyea D, Doremus R, Roberts B, Turnbull D.Growth and Perfection of Crystals. New York: Wiley, 1958: 393 | [27] | Hu H Q. Metal Solidification Principle.Beijing: Machine Industry Press, 2010: 93 | [27] | (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2010: 93) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|