Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1059-1066    DOI: 10.11900/0412.1961.2015.00132
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT
Tao LIU1,2,Jiasheng DONG2(),Guang XIE2,Yisheng WANG3,Hui LI2,Zhijun LI4,Xingtai ZHOU4,Langhong LOU2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 Power Branch, AVIC China National South Aviation Industry Co., Ltd., Zhuzhou 412002
4 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
Cite this article: 

Tao LIU,Jiasheng DONG,Guang XIE,Yisheng WANG,Hui LI,Zhijun LI,Xingtai ZHOU,Langhong LOU. CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT. Acta Metall Sin, 2015, 51(9): 1059-1066.

Download:  HTML  PDF(7887KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one of the most promising next generation reactors, the molten salt breeder reactor (MSBR) with excellent inherence security has attracted more and more attentions in recent years due to energy shortage and the security problem of traditional nuclear reactor. The most significant service characteristic of the structural material used in MSBR is the existence of FLiNaK molten salt compared with other nuclear reactors. FLiNaK molten salt is very corrosive to the structural material in the reactor, and affects the safety operation of nuclear power plants. A polycrystalline Ni-Mo-Cr-Fe superalloy was developed and used as an important structural material in MSBR at Oak Ridge National Laboratory (ORNL), but the corrosion mechanism of the alloy in FLiNaK molten salt has not been determined since the study terminated in 1970' s as some politic reasons. Alloy served in harsh environments, often using protective coating to improve the corrosion properties. While few works about the coating corrosion resistance in FLiNaK molten salt were reported at present. Al2O3 and Cr2O3 coatings usually have excellent corrosion resistance in molten salt, such as sulphate, nitrate and halide molten salt. But, whether the oxide film has corrosion resistance in FLiNaK molten salt has not been determined. In this work, the corrosion mechanism of alloy in FLiNaK molten salt was studied by using immersion corrosion experiment through the method of SEM, EDS and XRD. The influence of Al2O3 coating on corrosion resistance in FLiNaK molten salt was also investigated. The results show that the Al2O3 coating does not affect the exsolution corrosion characteristics of Cr and Mo elements in FLiNaK molten salt at 700 ℃ for 400 h. The different is that naked alloy exhibits intergranular corrosion characteristic, and the alloy with Al2O3 coating exhibits spot corrosion characteristic. The Al2O3 coating cannot improve the corrosion resistance of the alloy in FLiNaK molten salt. The Al2O3 film dissolved in molten salt and resulted in the exposure of the alloy surface. The corrosion rate was increased since the formation of corrosion cell between oxide film and the exposed alloy surface.

Key words:  GH3535 alloy      FLiNaK molten salt      Al2O3 coating      corrosion     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00132     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1059

Fig.1  SEM images of the GH3535 specimens immersed in FLiNaK molten salt at 700 ℃ for 400 h without (a, c, e) and with (b, d, f) Al2O3 film
Fig.2  XRD spectra of the GH3535 specimens immersed in FLiNaK molten salt without (a) and with (b) Al2O3 film at 700 ℃ for 400 h
Fig.3  Cross-sectional SE-SEM (a) and BSE-SEM (b) images of the GH3535 specimens without Al2O3 film in FLiNaK molten salt at 700 ℃ for 400 h
Fig.4  Element distributions of the GH3535 specimen without Al2O3 film immersed in FLiNaK molten salt at 700 ℃ for 400 h

(a) Cr (b) Mo (c) Fe (d) O (e) Al (f) Ni

Fig.5  Cross-sectional SE-SEM (a) and BSE-SEM (b) images of the GH3535 specimens with Al2O3 film immersed in FLiNaK molten salt at 700 ℃ for 400 h
Fig.6  Element distributions of the GH3535 specimens with Al2O3 film immersed in FLiNaK molten salt at 700 ℃ for 400 h
Fig.7  Corrosion schematic of the corrosion reaction of the GH3535 specimen without Al2O3 film during long term thermal exposure in FLiNaK molten salt at 700 ℃ for 400 h
Fig.8  Corrosion schematic of the corrosion reaction of the Al2O3 film during long term thermal exposure in FLiNaK molten salt at 700℃ for 400 h
Fig.9  Corrosion schematic of the corrosion reaction of the Al2O3 film during long term thermal exposure before (a) and after (b) Al2O3 film peeled off in FLiNaK molten salt at 700 ℃ for 400 h
[1] Guerrieri C, Cammi A, Luzzi L. Prog Nucl Energ, 2013; 67: 56
[2] Zou S L, Zou Y. J Univ South China (Soc Sci Ed), 2011; 12(2): 1 (邹树梁, 邹 旸. 南华大学学报(社会科学版), 2011; 12(2): 1)
[3] Zanetti M, Cammi A, Fiorina C, Luzzi L. Prog Nucl Energy, 2015; 83: 82
[4] Jér?me S, Michel A, Ondrej B, Sylvie D, Olga F, Véronique G, Daniel H, David H, Victor I, Jan L K, Lelio L, Elsa M L, Jan U, Ritsuo Y, Dai Z. Prog Nucl Energy, 2014; 77: 308
[5] Rosenthal M W, Kasten P R, Briggs R B. Nucl Appl Technol, 1970; 8: 107
[6] Manly W D, Coobs J H, De Van J H, Douglas D A, Inouye H, Patriarca P, Roche T K, Scott J L. Prog Nucl Energy, 1960; 4: 164
[7] Wang Y M. J Chin Soc Corros Prot, 1981; 1: 64 (罔毅民. 中国腐蚀与防护学报, 1981; 1: 64)
[8] Nobuya I, Yukio M, Kazuo F, Yoshio K, Hiroshi K. Trans JWRI, 1980; 9: 117
[9] Kondo M, Nagasaka T, Xu Q, Muroga T, Sagara A, Noda N, Ninomiya D, Nagura M, Suzuki A, Terai T, Fujii N. Fusion Eng Des, 2009; 84: 1081
[10] Olson L C, Ambrosek J W, Sridharan K, Anderson M H, Allen T R. J Fluorine Chem, 2009; 130: 67
[11] Cho S H, Park S B, Kang D S, Jeong M S, Park H, Hur J M, Lee H S. J Nucl Mater, 2010; 399: 212
[12] Rahman A, Chawlab V, Jayaganthan R, Chandra R, Ambardar R. Mater Chem Phys, 2011; 126: 253
[13] Dutta R S, Yusufali C, Paul B, Majumdar S, Sengupta P, Mishra R K, Kaushik C P, Kshirsagar R J, Kulkarni U D, Dey G K. J Nucl Mater, 2013; 432: 72
[14] Ma J, Jiang S M, Gong J, Sun C. Corros Sci, 2012; 58: 251
[15] Firouzi A, Shirvani K. Corros Sci, 2010; 52: 3579
[16] Zheng D Y, Zhu S L, Wang F H. Surf Coat Technol, 2006; 200: 5931
[17] Phahle A M, Hill A E, Calderwood J H. Thin Solid Films, 1974; 22: 67
[18] Dasher B E, Farmer J, Ferreira J, Caro M S, Rubenchik A, Kimura A. J Nucl Mater, 2011; 419: 15
[19] Liu T, Dong J S, Wang L, Li Z J, Zhou X T, Lou L H, Zhang J. J Mater Sci Technol, 2015; 31: 269
[20] Ouyang F Y, Chang C H, You B C, Yeh T K, Kai J J. J Nucl Mater, 2013; 437: 201
[21] Tyreman C J. PhD Dissertation, University of Manchester, Manchester, UK, 1986
[22] Olson L C. PhD Dissertation, University of Wisconsin-Madison, Madison, USA, 2009
[23] Fu G F, Wang J, Kang J. Trans Nonferr Met Soc China, 2008; 18: 743
[24] Dreveton A. Procedia Eng, 2012; 46: 255
[25] Cao C N. Principles of Electrochemistry of Corrosion. Beijing: Chemical Industry Press, 2008: 104 (曹楚南. 腐蚀电化学原理. 北京: 化学工业出版社, 2008: 104)
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[9] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[15] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
No Suggested Reading articles found!