Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1067-1076    DOI: 10.11900/0412.1961.2015.00133
Current Issue | Archive | Adv Search |
EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS
Yunfei LU1,2,Junhua DONG1(),Wei KE1
1 Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Wuhan the Second Ship Design and Research Institute, Wuhan 430064
Cite this article: 

Yunfei LU,Junhua DONG,Wei KE. EFFECTS OF SO42- ON THE CORROSION BEHAVIOR OF NiCu LOW ALLOY STEEL IN DEAERATED BICARBONATE SOLUTIONS. Acta Metall Sin, 2015, 51(9): 1067-1076.

Download:  HTML  PDF(3021KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High level radioactive waste (HLW) is an extremely dangerous by-product of the global nuclear industry. Due to its intensely radioactive nature and ultra long half-life, HLW has to be safely managed and disposed for thousands of years, isolated from the biosphere. Deep geological repository (DGR) is considered to be the most feasible option worldwide because of its operability, stability, durability, environmental protection and so on. Basically, DGR relies on a multibarrier system and it consists of metallic canisters, backfill materials and a stable geologic formation. Since radionuclides could be moved into the biosphere by action of groundwater, both the geologic formation and backfill materials have to be of very low hydraulic permeability and metal canisters have to be corrosion resistant and prevent contact between the groundwater and the radioactive waste for as long as possible. Low carbon steel has been selected and studied as a candidate canister material in many countries because its long industrial experience, high-strength, low cost and it is less prone to localized corrosion than materials that passivity, but its larger corrosion rate may also set an insuperable barrier for the practical application. Recently, our studies revealed that NiCu low alloy steel is a more promising candidate for the canister material compared with the popular one, low carbon steel, since the former performs a more acceptable corrosion rate without increasing much cost and has better resistance to localized corrosion in environments with high concentration of Cl-. In this work, effects of SO42-, another ubiquitous species in deep groundwater, on the corrosion behavior of NiCu low alloy steel during immersion in simulated deep groundwater environments were investigated by in situ electrochemical measurements and surface analysis techniques. Results show that the addition of SO42- can promote the substrate dissolution during the initial stage of immersion. In the later stage, SO42- weakens the protectiveness of formed films and consequently, active dissolution prevails on the electrode surface rather than the prepassivation. Concentrated SO42- and HCO3- can both promote the formation of Fe6(OH)12CO3. The main components of corrosion products are a-FeOOH, Fe3O4 and Fe6(OH)12CO3, and uniform corrosion is observed.

Key words:  low alloy steel      rust      HCO3-      SO42-     
Fund: Supported by National Natural Science Foundation of China (No.51471175)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00133     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1067

Fig.1  Polarization curves of NiCu low alloy steel in the deaerated 0.05 mol/L (a) and 0.10 mol/L (b) bicarbonate solutions containing different concentrations of SO42- and without SO42-[15,16](Ecorr—corrosion potential, P1—the first oxidation peak, P2—the second oxidation peak, P3—the third oxidation peak)
Fig.2  Evolution curves of open circuit potential of NiCu low alloy steel in the deaerated 0.05 mol/L (a) and 0.10 mol/L (b) bicarbonate solutions with or without[15,16] 0.10 mol/L SO42-
Fig.3  Bode phase plots (a, c) and Bode impedance plots (b, d) of NiCu low alloy steel for the first (a, b) and third (c, d) stages in the deaerated 0.05 mol/L bicarbonate solution containing 0.10 mol/L SO42-
Fig.4  Bode phase plots (a, c) and Bode impedance plots (b, d) of NiCu low alloy steel for the first (a, b) and third (c, d) stages in the deaerated 0.10 mol/L bicarbonate solution containing 0.10 mol/L SO42-
Fig.5  Equivalent circuits for fitting the EIS data measured in the 0.05 mol/L NaHCO3+0.10 mol/L Na2SO4 (a)and 0.10 mol/L NaHCO3+0.10 mol/L Na2SO4 (b) solutions (QHF—capacitance caused by high frequency phase shift, Re—electrolyte resistance, Qdl—double layer capacitance, Rct—charge transfer resistance, W—Warburg impedance, Qcp—capacitance of precipitated corrosion products layer, Rcp—resistance of precipitated corrosion products layer)
Time Y0,HF nHF Re Y0,dl ndl Rct Y0,W
d Ssncm-2 Wcm2 Ssncm-2 Wcm2 Ss0.5cm-2
1 - - 18.24 0.0002459 0.8338 5188 0.006392
5 1.728×10-7 1 17.84 0.0010690 0.9170 4126 -
9 3.684×10-6 0.7569 18.38 0.0032880 0.8994 3830 0.012470
15 2.367×10-5 0.6325 18.28 0.0065300 0.9053 3072 0.003444
21 4.490×10-5 0.5914 17.97 0.0097040 0.9041 2590 0.003690
27 1.906×10-5 0.6445 17.49 0.0138600 0.8896 3648 0.010770
32 3.000×10-5 0.6158 17.92 0.0174700 0.8708 4204 -
44 3.243×10-5 0.6009 21.60 0.0060670 0.8241 1339 0.006091
50 2.503×10-5 0.6203 22.26 0.0064910 0.8261 1486 0.007765
Table 1  Fitted results for EIS data measured in the deaerated 0.05 mol/L NaHCO3+0.10 mol/L Na2SO4 solution
Fig.6  Evolution of the Rct obtained from EIS data as a function of immersion time in the deaerated 0.05 mol/L (a) and 0.10 mol/L (b) bicarbonate solutions with or without[15,16] 0.10 mol/L SO42-
Time Re Y0,cp ncp Rcp Y0,dl ndl Rct Y0,W
d Wcm2 Ssncm-2 Wcm2 Ssncm-2 Wcm2 Ss0.5cm-2
1 14.58 - - - 0.0002781 0.8658 2538 0.012750
4 15.66 - - - 0.0011160 0.9163 4236 0.003927
8 14.58 - - - 0.0027680 0.8409 3408 -
14 15.32 0.02028 0.6764 27.89 0.0059360 0.9072 4110 -
20 14.72 0.01620 0.6958 41.75 0.0083580 0.8713 3752 -
26 15.05 0.02627 0.9692 55.75 0.0071720 0.8090 3780 -
31 14.89 0.02941 0.9916 65.46 0.0099230 0.8147 4038 -
37 17.34 0.03457 1 107.80 0.0114000 0.8218 5219 -
43 16.42 0.03906 1 104.70 0.0121500 0.8159 4094 -
Table 2  Fitted results for EIS data measured in the deaerated 0.10 mol/L NaHCO3+0.10 mol/L Na2SO4 solution
Fig.7  XRD spectra of the surface layer of NiCu low alloy steel after immersion tests
Fig.8  Low (a, c) and high (b, d) magnified surface morphologies of low alloy steel after immersion tests in 0.05 mol/L NaHCO3+0.10 mol/L Na2SO4 solution for 56 d (a, b) and 0.10 mol/L NaHCO3+0.10 mol/L Na2SO4 solution for 43 d (c, d)
[1] Taniguchi N, Suzuki H, Kawasaki M, Naito M, Kobayashi M, Takahashi R, Asano H. Corros Eng Sci Technol, 2011; 46: 117
[2] Kursten B, Druyts F, Macdonald D D, Smart N R, Gens R, Wang L, Weetjens E, Govaerts J, Corros Eng Sci Technol, 2011; 46: 91
[3] Macdonald D D, Urquidi-Macdonald M, Engelhardt G R, Azizi O, Saleh A, Almazooqi A, Rosas-Camacho O. Corros Eng Sci Technol, 2011; 46: 98
[4] Féron D, Crusset D, Gras J M. J Nucl Mater, 2008; 379: 16
[5] Bennett D G, Gens R. J Nucl Mater, 2008; 379 : 1
[6] King F, Padovani C. Corros Eng Sci Technol, 2011; 46: 82
[7] King F. Corrosion, 2013; 69: 986
[8] Guo Y H, Wang J, Lv C H, Liu S F, Zhong Z H. Earth Sci Front, 2005; 12( Suppl): 117 (郭永海, 王 驹, 吕川河, 刘淑芬, 钟自华. 地学前缘, 2005; 12(特刊): 117)
[9] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145 (曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)
[10] Matsushima I,Translated by Jing Y K. Low-Alloy Corrosion Resistant Steels: A History of Development, Application and Research. Beijing: Metallurgic Industry Press, 2004: 100 (松岛 岩著,靳裕康译. 低合金耐蚀钢——开发、发展及研究. 北京: 冶金工业出版社, 2004: 100)
[11] Kihira H, Kimura M. Corrosion, 2011; 67: 1
[12] Yang J F, Dong J H, Ke W. Acta Metall Sin, 2011; 47: 1321 (阳靖峰, 董俊华, 柯 伟. 金属学报, 2011; 47: 1321)
[13] Wen H L, Dong J H, Ke W, Chen W J, Yang J F, Chen N. Acta Metall Sin, 2014; 50: 275 (文怀梁, 董俊华, 柯 伟, 陈文娟, 阳靖峰, 陈 楠. 金属学报, 2014; 50: 275)
[14] Lu Y F, Yang J F, Dong J H, Ke W. Acta Metall Sin, 2015; 51: 440 (卢云飞, 阳靖峰, 董俊华, 柯 伟. 金属学报, 2015; 51: 440)
[15] Lu Y F, Dong J H, Ke W. J Mater Sci Technol, accepted.
[16] Lu Y F, Dong J H, Ke W. J Mater Sci Technol, doi:
[17] Dong J H, Nishimura T, Kodama T. MRS Symp Process, 2002; 713: 105
[18] Bockris J O M, Drazic D, Despic A R. Electrochim Acta, 1961; 4: 325
[19] Davies D H, Burstein G T. Corrosion, 1980; 36: 416
[20] Burstein G T, Davies D H. Corros Sci, 1980; 20: 1143
[21] Cao C N,Zhang J Q. Introduction of Electrochemical Impedance Spectroscopy. Beijing: Science Press, 2002: 135 (曹楚南,张鉴清. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 135)
[22] Sherar B W A, Keech P G, Qin Z, King F, Shoesmith D W. Corrosion, 2010; 66: 045001-1
[23] Genin J M R, Bourrie G, Trolard F, Abdelmoula M, Jaffrezic A, Refait P, Maitre V, Humbert B, Herbillon A. Environ Sci Technol, 1988; 32: 1058
[24] Larroumet D, Greenfield D, Akid R, Yarwood J. J?Raman?Spectrosc, 2008; 39: 1740
[25] Drissi S H, Refait P, Abdelmoula M, Genin J M R. Corros Sci, 1995; 37: 2025
[1] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[2] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[3] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[4] Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. 金属学报, 2015, 51(7): 784-790.
[5] LU Yunfei, YANG Jingfeng, DONG Junhua, KE Wei. THE CORROSION BEHAVIOUR OF NiCu LOW ALLOY STEEL IN A DEAERATED BICARBONATE SOLUTION CONTAINING Cl- IONS[J]. 金属学报, 2015, 51(4): 440-448.
[6] WU Xinqiang, TAN Jibo, XU Song, HAN En-Hou, KE Wei. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. 金属学报, 2015, 51(3): 298-306.
[7] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF pH VALUE ON THE CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL-INDUSTRIAL ATMOSPHERES[J]. 金属学报, 2015, 51(2): 191-200.
[8] Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION[J]. 金属学报, 2015, 51(11): 1297-1305.
[9] CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF SO2 ON CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL- INDUSTRIAL ATMOSPHERE[J]. 金属学报, 2014, 50(7): 802-810.
[10] XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃[J]. 金属学报, 2014, 50(6): 659-666.
[11] FANG Yupei, XIE Zhenjia, SHANG Chengjia. EFFECT OF INDUCTION TEMPERING ON CARBIDE PRECIPITATION BEHAVIOR AND TOUGHNESS OF A 1000 MPa GRADE HIGH STRENGTH LOW ALLOY STEEL[J]. 金属学报, 2014, 50(12): 1413-1420.
[12] WANG Changgang, DONG Junhua, KE Wei, LI Xiaofang. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF COPPER IN THE MIXED SOLUTION OF HCO3-, SO42- AND Cl-[J]. 金属学报, 2013, 49(2): 207-213.
[13] WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-[J]. 金属学报, 2012, 48(11): 1365-1373.
[14] PENG Xin WANG Jia SHAN Chuan WANG Haijie LIU Zaijian ZOU Yan. CORROSION BEHAVIOR OF LONG–TIME IMMERSED RUSTED CARBON STEEL IN FLOWING SEAWATER[J]. 金属学报, 2012, 48(10): 1260-1266.
[15] WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFECTS OF HCO3- AND SO42- ON THE PITTING CORROSION BEHAVIOR OF Cu[J]. 金属学报, 2012, 48(1): 85-93.
No Suggested Reading articles found!