Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 853-858    DOI: 10.11900/0412.1961.2015.00007
Current Issue | Archive | Adv Search |
EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD
Xiaoyan CHEN1,Zhe JIN2,Xuefeng BAI2,Yizhou ZHOU1(),Tao JIN1,Xiaofeng SUN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Shenyang Liming Aero-Engine Group Corporation, Shenyang 110043
Cite this article: 

Xiaoyan CHEN,Zhe JIN,Xuefeng BAI,Yizhou ZHOU,Tao JIN,Xiaofeng SUN. EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD. Acta Metall Sin, 2015, 51(7): 853-858.

Download:  HTML  PDF(3918KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superalloy components are always produced by the way of investment casing. During investment casting, interfacial reactions may take place and bring about metal contamination and defect formation on the surface of the components. The influence of C content on the interfacial reaction and wettability between a Ni-based superalloy and ceramic mould was investigated by using a sessile drop method. The interfacial morphology and elements distribution were studied by SEM and EPMA. Activities of C, Cr and Al were calculated by using Thermo-Calc software. The relationship between interfacial reaction and wettability was discussed. It was found that when C content was higher than 0.1%, activity of C increased greatly and interfacial reaction took place. The wettability varied from non-reactive wetting to reactive wetting. In the reactive wetting systems, sand adhesions appeared and Al and Cr diffused to the ceramic surface.

Key words:  superalloy      ceramic mould      interfacial reaction      wettability      activity      C     
Fund: Supported by National Natural Science Foundation of China (Nos.51271186, 51331005 and 11332010) and High Technology Research and Development Program of China (No.2014AA041701)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00007     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/853

Fig.1  Schematic of high temperature furnace for the wetting experiment
Fig.2  Variation in the wetting angle with time (t) for the alloy melt/ceramic couples
Fig.3  Macrographs of the alloys and the ceramics after wetting experiments (The numbers 0.008~0.3 are the mass fraction of C in the alloy)
Fig.4  Microstructures around the alloy melt (0.2%C)/ceramic interaction area (a), detailed microstructure for areas I (b) and II (c) in Fig.4a, EPMA elemental distributions around the alloy melt (0.2%C)/ceramic interaction area (d1~d4)
Fig.5  Interface microstructures of the non-reactive wetting system (0.05%C) (a), reactive wetting system (0.2%C) (b) and EMPA elemental distributions of the interfacial zone for the reactive wetting system (c1~c4)
Alloy aC / 10-4 aAl / 10-7 aCr / 10-4
A1 2.01 3.52 1.50
A2 2.51 3.52 1.50
A3 12.77 3.57 1.47
A4 26.05 3.63 1.45
A5 53.54 3.79 1.38
A6 81.78 3.86 1.35
Table1  Activities of C (aC), Al (aAl) and Cr (aCr) for alloys A1~A6 at 1550 ℃
[1] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31: 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31: 1)
[2] Chen R Z, Wang L B, Li J H. J Aero Mater, 2000; 20(1): 55 (陈荣章, 王罗宝, 李建华. 航空材料学报, 2000; 20(1): 55)
[3] Konter M, Thumann M. J Mater Process Technol, 2001; 117: 386
[4] Volek A, Pyczak F, Singer R F, Mughrabi H. Scr Mater, 2005; 52: 141
[5] Yeh A C, Tin S. Scr Mater, 2005; 52: 519
[6] Li J R, Tang D Z, Li R L, Li S Z, Wang Z T. J Mater Sci Technol, 1999; 15: 53
[7] Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898
[8] Maktouf W, Sai K. Eng Fail Anal, 2015; 47: 89
[9] Ford T. Aircraft Eng Aero Technol, 1997; 69: 564
[10] Kruglov E P, Kochetova G K. Russ Aero, 2007; 50: 227
[11] Wang Z J, Zhang L T. Acta Aerodyn Sin, 1989; 10: 167 (王祖锦, 张立同. 航空学报, 1989; 10: 167)
[12] Jin Z X. Foundry, 2000; 49: 172 (金仲信. 铸造, 2000; 49: 172)
[13] Hu G Q, Wang P, Pen F, Xiao N M. Foundry Technol, 2011; 32: 610 (扈广麒, 王 培, 彭 凡, 肖纳敏. 铸造技术, 2011; 32: 610)
[14] Kumar G, Prabhu K N. Adv Colloid Interface Sci, 2007; 133: 61
[15] Nakashima K, Matsumoto H, Mori K. Acta Mater, 2000; 48: 4677
[16] Cutler E R, Wasson A J, Fuchs G E. Scr Mater, 2008; 58: 146
[17] Xu Y L, Jin Q M, Xiao X S, Cao X L, Jia G Q, Zhu Y M, Yin H J. Mater Sci Eng, 2011; A528: 4600
[18] Jiang D L,Li L S,Ouyang S X,Shi J L. Material Handbook of Inorganic Metal. Beijing: Chemical Industry Press, 2009: 38 (江东亮,李龙士,欧阳世翕,施剑林. 无机非金属材料手册. 北京: 化学工业出版社, 2009: 38)
[19] Orlov M R. Russ Metall, 2008; 1: 70
[20] Liu X F, Guo W J, Lou Y C, Su G Q, Yu B. Foundry, 2010; 59: 1293 (刘孝福, 郭伟杰, 娄延春, 苏贵桥, 于 波. 铸造, 2010; 59: 1293)
[21] Wei Z J. Formation Process of Liquid Metals. Beijing: Higher Education Press, 2010: 252 (魏尊杰. 金属液态成型工艺. 北京: 高等教育出版社, 2010: 252)
[22] Liang Y J. Thermochemical Data of Inorganics. Shenyang: Northeastern University Press, 1993: 513 (梁英教. 无机热力学数据手册. 沈阳: 东北大学出版社, 1993: 513)
[23] Ma G F, He C L. Acta Metall Sin, 2013; 49: 495 (马国峰, 贺春林. 金属学报, 2013; 49: 495)
[24] Дemhиc И M, Кapпobич Ю Ф, Гjie3ep Г M. J Aero Mater, 1991; 11: 62 (Дemhиc И M, Кapпobич Ю Ф, Гjie3ep Г M. 航空材料学报, 1991; 11: 62)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[11] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[12] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[13] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[14] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!