Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 866-872    DOI: 10.11900/0412.1961.2014.00681
Current Issue | Archive | Adv Search |
PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT
Yanli LU(),Guangming LU,Tingting HU,Tao YANG,Zheng CHEN
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi'an 710072
Cite this article: 

Yanli LU,Guangming LU,Tingting HU,Tao YANG,Zheng CHEN. PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT. Acta Metall Sin, 2015, 51(7): 866-872.

Download:  HTML  PDF(3524KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mechanical properties of materials are related to the integrity of interfaces (phase and grain boundaries). For substitutional alloys, the Kirkendall voids tend to form more easily at the phase boundary or grain boundary when the atomic mobilities of different species are unequal, which will degrade the bounding quality of interfaces. So far, there have many experimental studies on the evolution of Kirkendall voids and the formation mechanism. However, allowing for the fast process of the Kirkendall voids from formation to evolution, it is hard to capture such process in real experimental conditionals. So the formation and evolution mechanism of the Kirkendall void need to be studied. A binary phase field crystal model was used to simulate the process of void formation and expansion at phase boundaries induced by the Kirkendall effect. Simulated results show that for the low misorientation phase boundary (PB), the void moves toward the side with large atomic mobility (a phase) and the void shape evolves from the initial parallelogram to hexagon. The atomic annihilation rate around a void is faster than that of growth rate, which results in void expansion. The PB migration, phase growth and shrinkage can also be observed in void expansion. For the large misorientation PB, voids can also expand along the PB direction, resulting in the connection of voids, therefore, the PB is separated and presents zigzag shape. In the interdiffusion system, the free energy decreases. The descending speed of the free energy is almost equal for the low misorientation PB while is increasing for the large misorientation PB when the atomic mobility difference becomes larger. The descending speed of the free energy is proportional to PB misorientations. The PB void predicted from our computer simulation is consistent with the experiment observation.

Key words:  binary phase field crystal      Kirkendall effect      phase boundary      vacancy      Kirkendall void     
Fund: Supported by National Natural Science Foundation of China (Nos.51174168 and 51274167), Fundamental Research Funds for the Central Universities (No.3102015ZY025) and Natural Science Basic Research Plan in Shanxi Province (No.2014JM7261)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00681     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/866

Fig.1  Initial setup schematic of phase boundary void induced by the Kirkendall effect (x and y indicate the two directions of the simulated area. y, PB, JA, JB and JV indicate the atomic concentration field, the position of the phase boundary, the A atomic flux from a phase to b phase, the B atomic flux from phase to a phase and the net vacancy flux from b phase to phase, respectively)
Fig.2  Void formation and evolution diagrams at the low misorientation (q=2°) phase boundary at evolution time T=1×105Dt (a), T=2×105Dt (b), T=3×105Dt (c), T=4×105Dt (d) and T=6×105Dt (e) (o indicates the initial position of the phase boundary)
Fig.3  Void formation and evolution diagrams at the large misorientation (q=12°) phase boundary at T=8×103Dt(a), T=6×104Dt (b), T=8×104Dt (c), T=9×104Dt (d), T=1×105Dt (e), T=1.1×105Dt (f), T=1.3×105Dt (g), T=1.4×105Dt (h), T=1.6×105Dt (i) and T=2×105Dt (j)
Fig.4  Free energy evolution curves corresponding to different atomic mobilities for low misorientation (q=2°) (a) and large misorientation (q=12°) (b) (MA and MB are the atomic mobilities corresponding to A atom and B atom, respectively)
Fig.5  Free energy evolution curves corresponding to different misorientations for the same atomic mobility ratio (MA=100MB)
Fig.6  Comparisons of the simulated results of Kirkendall void at the phase boundary with experiment observation[26]
[1] Borgenstam A, Hillert M. Acta Mater, 2000; 48: 2765
[2] Gan H, Tu K N. J Appl Phys, 2005; 97: 063514-1
[3] Ding M, Wang G T, Chao B, Ho P S, Su P, Uehling T. J Appl Phys, 2006; 99: 094906-1
[4] Kim D S, Chang J H, Park J, Pak J J. J Mater Sci, 2011; 22: 703
[5] Chiu T C, Zeng K J, Stierman R, Edwards D, Ano K. Electronic Components and Technology Conference (ECTC). Vol.2, Washington D C, USA: IEEE, 2004: 1256
[6] Li X P, Zhou M B, Xia J M, Ma X, Zhang X P. Acta Metall Sin, 2011; 47: 611 (李勋平, 周敏波, 夏建民, 马 骁, 张新平. 金属学报, 2011; 47: 611)
[7] Müller W H, Weinberg K, B?hme T. Sixth Int Congr on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich: PAMM, 2007: 4030035
[8] Nakahara S, McCoy R J. Appl Phys Lett, 1980; 37: 42
[9] Zeng K, Stierman R, Chiu T C, Edwards D, Ano K, Tu K N. J Appl Phys, 2005; 97: 024508-1
[10] Son H Y, Jung G J, Park B J, Paik K W. J Electron Mater, 2008; 37: 1832
[11] Xu L, Pang J, Che F. J Electron Mater, 2008; 37: 880
[12] Yu H C, Yeon D H, Li X F, Thornton K. Acta Mater, 2009; 57: 5348
[13] Delogu F. Mater Chem Phys, 2011; 125: 390
[14] Yang Y. PhD Dissertation, Shanghai Jiao Tong University, 2012 (杨 扬. 上海交通大学博士学位论文, 2012)
[15] Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[16] Elder K R, Grant M. Phys Rev,?2004; 70E: 051605
[17] Zhao Y L, Chen Z, Long J, Yang T. Acta Phys Sin, 2013; 62: 118102 (赵宇龙, 陈 铮, 龙 建, 杨 涛. 物理学报, 2013; 62: 118102)
[18] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101 (龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101)
[19] Li S J, Chen Z, Yuan J J, Zhang J. Acta Phys Sin, 2014; 63: 128101 (李尚洁, 陈 铮, 员江娟, 张 静. 物理学报, 2014; 63: 128101)
[20] Zhao Y L, Chen Z, Long J, Yang T. Acta Metall Sin (Engl Lett), 2014; 27: 81
[21] Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301 (杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[22] Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892 (高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892)
[23] Elder K R, Provatas N, Berry J, Stefanovic P, Grant M. Phys Rev, 2007;?75B: 064107
[24] Elder K R, Huang Z F, Provatas N. Phys Rev, 2010; 81E: 011602
[25] Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147
[26] Rabkin E, Klinger L, Izyumova T, Semenov V N. Scr Mater, 2000; 42: 1031
[1] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[2] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[3] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
[4] Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals[J]. 金属学报, 2018, 54(11): 1683-1692.
[5] Jun LI,Wenpeng LIU,Yibin REN,Minggang SHEN,Ke YANG. Preparation of Micro Porous Stainless Steel by Physical Vacuum Dealloying[J]. 金属学报, 2017, 53(5): 524-530.
[6] Liansheng CHEN, Yue LI, Mingshan ZHANG, Yaqiang TIAN, Xiaoping ZHENG, Yong XU, Shihong ZHANG. Effect of Intercritical Dislocation Multiplication to Mn Partitioning and Microstructure Evolution of Bainite in Low Carbon Steel[J]. 金属学报, 2017, 53(11): 1418-1426.
[7] Xunhua YUAN, Qifu ZHANG. Microstructure Evolution of Hot-Dip Al-10%Si Coating During the Austenitization of 22MnB5 Hot Stamping Steel[J]. 金属学报, 2017, 53(11): 1495-1503.
[8] Kang WANG,Aihong DENG,Min GONG,Xiaobo LU,Yuanyuan ZHANG,Xiang LIU. Effect on Microstructure of Tungsten Under Helium Ions Irradiation with Multiple Energy[J]. 金属学报, 2017, 53(1): 70-76.
[9] Zhaoping LU, Suihe JIANG, Junyang HE, Jie ZHOU, Wenli SONG, Yuan WU, Hui WANG, Xiongjun LIU. SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS[J]. 金属学报, 2016, 52(10): 1183-1198.
[10] Wenjing MA,Changbo KE,Minbo ZHOU,Shuibao LIANG,Xinping ZHANG. PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2015, 51(7): 873-882.
[11] WANG Xiaojiao, SHEN Qin, YAN Jujie, QIU Tao, WANG Bo, LI Hui, LIU Wenqing. PRECIPITATION CHARACTERIZATION OF NiAl AND Cu-RICH PHASES IN DUAL-PHASE REGION OF PRECIPITATION STRENGTHENING STEEL[J]. 金属学报, 2014, 50(11): 1305-1310.
[12] ZHOU Liying, WANG Fuhe. FIRST-PRINCIPLES STUDY OF EFFECT OF POINT DEFECT ON ADSORPTION AND DIFFUSION OF OXYGEN AT γ-TiAl (100) SURFACE[J]. 金属学报, 2013, 49(11): 1387-1391.
[13] LI Hui, LIANG Yongfeng, HE Ruiqi, LIN Junpin, YE Feng. ORDERED STRUCTURE AND MECHANICAL PROPERTIES  OF  Fe-6.5%Si ALLOY FABRICATED BY RAPID QUENCHING[J]. 金属学报, 2013, 49(11): 1452-1456.
[14] XU Gang CAI Linling FENG Liu ZHOU Bangxin LIU Wenqing WANG Junan. SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT[J]. 金属学报, 2012, 48(7): 789-796.
[15] LI Xunping ZHOU Minbo XIA Jianmin MA Xiao ZHANG Xinping. EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS[J]. 金属学报, 2011, 47(5): 611-619.
No Suggested Reading articles found!