|
|
PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT |
Yanli LU( ),Guangming LU,Tingting HU,Tao YANG,Zheng CHEN |
State Key Laboratory of Solidification Processing, Northwestern Ploytechnical University, Xi'an 710072 |
|
Cite this article:
Yanli LU,Guangming LU,Tingting HU,Tao YANG,Zheng CHEN. PHASE FIELD CRYSTAL STUDY ON THE FORMATION AND EVOLUTION OF PHASE BOUNDARY VOID INDUCED BY THE KIRKENDALL EFFECT. Acta Metall Sin, 2015, 51(7): 866-872.
|
Abstract The mechanical properties of materials are related to the integrity of interfaces (phase and grain boundaries). For substitutional alloys, the Kirkendall voids tend to form more easily at the phase boundary or grain boundary when the atomic mobilities of different species are unequal, which will degrade the bounding quality of interfaces. So far, there have many experimental studies on the evolution of Kirkendall voids and the formation mechanism. However, allowing for the fast process of the Kirkendall voids from formation to evolution, it is hard to capture such process in real experimental conditionals. So the formation and evolution mechanism of the Kirkendall void need to be studied. A binary phase field crystal model was used to simulate the process of void formation and expansion at phase boundaries induced by the Kirkendall effect. Simulated results show that for the low misorientation phase boundary (PB), the void moves toward the side with large atomic mobility (a phase) and the void shape evolves from the initial parallelogram to hexagon. The atomic annihilation rate around a void is faster than that of growth rate, which results in void expansion. The PB migration, phase growth and shrinkage can also be observed in void expansion. For the large misorientation PB, voids can also expand along the PB direction, resulting in the connection of voids, therefore, the PB is separated and presents zigzag shape. In the interdiffusion system, the free energy decreases. The descending speed of the free energy is almost equal for the low misorientation PB while is increasing for the large misorientation PB when the atomic mobility difference becomes larger. The descending speed of the free energy is proportional to PB misorientations. The PB void predicted from our computer simulation is consistent with the experiment observation.
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51174168 and 51274167), Fundamental Research Funds for the Central Universities (No.3102015ZY025) and Natural Science Basic Research Plan in Shanxi Province (No.2014JM7261) |
[1] | Borgenstam A, Hillert M. Acta Mater, 2000; 48: 2765 | [2] | Gan H, Tu K N. J Appl Phys, 2005; 97: 063514-1 | [3] | Ding M, Wang G T, Chao B, Ho P S, Su P, Uehling T. J Appl Phys, 2006; 99: 094906-1 | [4] | Kim D S, Chang J H, Park J, Pak J J. J Mater Sci, 2011; 22: 703 | [5] | Chiu T C, Zeng K J, Stierman R, Edwards D, Ano K. Electronic Components and Technology Conference (ECTC). Vol.2, Washington D C, USA: IEEE, 2004: 1256 | [6] | Li X P, Zhou M B, Xia J M, Ma X, Zhang X P. Acta Metall Sin, 2011; 47: 611 (李勋平, 周敏波, 夏建民, 马 骁, 张新平. 金属学报, 2011; 47: 611) | [7] | Müller W H, Weinberg K, B?hme T. Sixth Int Congr on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich: PAMM, 2007: 4030035 | [8] | Nakahara S, McCoy R J. Appl Phys Lett, 1980; 37: 42 | [9] | Zeng K, Stierman R, Chiu T C, Edwards D, Ano K, Tu K N. J Appl Phys, 2005; 97: 024508-1 | [10] | Son H Y, Jung G J, Park B J, Paik K W. J Electron Mater, 2008; 37: 1832 | [11] | Xu L, Pang J, Che F. J Electron Mater, 2008; 37: 880 | [12] | Yu H C, Yeon D H, Li X F, Thornton K. Acta Mater, 2009; 57: 5348 | [13] | Delogu F. Mater Chem Phys, 2011; 125: 390 | [14] | Yang Y. PhD Dissertation, Shanghai Jiao Tong University, 2012 (杨 扬. 上海交通大学博士学位论文, 2012) | [15] | Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701 | [16] | Elder K R, Grant M. Phys Rev,?2004; 70E: 051605 | [17] | Zhao Y L, Chen Z, Long J, Yang T. Acta Phys Sin, 2013; 62: 118102 (赵宇龙, 陈 铮, 龙 建, 杨 涛. 物理学报, 2013; 62: 118102) | [18] | Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101 (龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101) | [19] | Li S J, Chen Z, Yuan J J, Zhang J. Acta Phys Sin, 2014; 63: 128101 (李尚洁, 陈 铮, 员江娟, 张 静. 物理学报, 2014; 63: 128101) | [20] | Zhao Y L, Chen Z, Long J, Yang T. Acta Metall Sin (Engl Lett), 2014; 27: 81 | [21] | Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301 (杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301) | [22] | Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892 (高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23: 1892) | [23] | Elder K R, Provatas N, Berry J, Stefanovic P, Grant M. Phys Rev, 2007;?75B: 064107 | [24] | Elder K R, Huang Z F, Provatas N. Phys Rev, 2010; 81E: 011602 | [25] | Chen L Q, Shen J. Comput Phys Commun, 1998; 108: 147 | [26] | Rabkin E, Klinger L, Izyumova T, Semenov V N. Scr Mater, 2000; 42: 1031 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|