Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 920-924    DOI: 10.11900/0412.1961.2015.00028
Current Issue | Archive | Adv Search |
STUDY ON σ PHASE PRECIPITATION OF HR3C STEEL USED IN ULTRA-SUPERCRITICAL BOILER
Hui WANG,Congqian CHENG,Jie ZHAO(),Zhi YANG
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023
Cite this article: 

Hui WANG,Congqian CHENG,Jie ZHAO,Zhi YANG. STUDY ON σ PHASE PRECIPITATION OF HR3C STEEL USED IN ULTRA-SUPERCRITICAL BOILER. Acta Metall Sin, 2015, 51(8): 920-924.

Download:  HTML  PDF(2667KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

HR3C steel is a new type of austenitic heat-resistant steel which has been widely used for super-heater and re-heater tubes in the ultra-supercritical (USC) boiler. The mechanical properties of HR3C steel were dependent on the stability of the microstructure, particularly the large amount of precipitates formed during service. The precipitation of s phase in HR3C steel during long-term aging for 2000 h at temperature of 700 and 750 ℃ was investigated by OM, SEM and TEM. The phase calculation method was applied to understand the factors influencing the precipitation. After 1000 h of the aging duration, irregular mass second phase was found to precipitate at the grain boundary, followed by the subsequent increasing and coarsening with time. The constituent elements of the phases were determined as Fe and Cr through SEM equipped with EDS. Further SAED analysis results led to the confirmation that these phases were basically s-FeCr compound. Combined with the prediction made through New PHACOMP method, the microstructure or phase structure in initial state may affect the subsequent precipitation behavior.

Key words:  HR3C steel      aging      s phase      phase computation      microstructure     
Fund: Supported by National Natural Science Foundation of China (Nos.51171037 and 51134013)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00028     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/920

Fig.1  OM images of microstructures for HR3C steel at different heat treatment states

(a) initial (b) 700 ℃, 1000 h (c) 700 ℃, 2000 h

(d) 750 ℃, 500 h (e) 750 ℃, 1000 h (f) 750 ℃, 2000 h

Fig.2  SEM image of HR3C steel after aging at 750 ℃ for 2000 h (a) and EDS analysis of large pieces precipitated phase at the grain boundary (b)
Fig.3  TEM image and SAED pattern (inset) of large size precipitated phase at grain boundary of HR3C steel after aging at 750 ℃ for 2000 h (a) and EDS analysis of the phase (b)
Fig.4  SEM image of microstructure of initial state HR3C steel (a) and EDS analysis of austenitic matrix (point 1) (b) and CrNbN phase (point 2) (c)
[1] Yang F,Zhang Y L,Ren Y N,Li W M. New Heat-Resistant Steels Welding. Beijing: China Electric Power Press, 2006: 143 (杨 富,章应霖,任永宁,李为民. 新型耐热钢焊接. 北京: 中国电力出版社, 2006: 143)
[2] Zhou R C, Fan C X. Electric Power, 2005; 38(8): 41 (周荣灿, 范长信. 中国电力, 2005; 38(8): 41)
[3] Tang L P. Appl Energy Technol, 2007; (10): 20 (唐利萍. 应用能源技术, 2007; (10): 20)
[4] Shirzadi A, Jackson S. Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials. Cambridge: Woodhead Publishing , 2014: 105
[5] Sawaragi Y, Teranishi H, Makiura H, Miura M, Kubota M. Sumitomo Met, 1985; 37(2): 166
[6] Bai X, Pan J, Chen G, Liu J, Wang J, Zhang T, Tang W. Mater Sci Technol-Lond, 2014; 30(2): 205
[7] Wang B, Liu Z D, Cheng S C, Liu C M, Wang J Z. J Iron Steel Res Int, 2014; 21: 765
[8] Sandstrm R, Farooq M, Zurek J. Mater Res Innov, 2013; 17: 355
[9] Igarashi M. In: Yagi K, Merkling G, Kern T U, Irie H, Warlimont W eds., Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group VIII: Advanced Materials and Technologies. Vol.2, Berlin: Springer-Verlag, 2004: 292
[10] Iseda A, Okada H, Semba H, Igarashi M. Energy Mater, 2007; 2: 199
[11] Yin Z, Cai H, Liu H G. Proc Chin Soc Electrical Eng, 2011; 31(29): 103 (殷 尊, 蔡 辉, 刘鸿国. 中国电机工程学报, 2011; 31(29) : 103 )
[12] Fang Y Y, Zhao J, Li X N. Acta Metall Sin, 2010; 46: 844 (方园园, 赵 杰, 李晓娜. 金属学报, 2010; 46: 844)
[13] Hu P, Wang Z W, Li Z G. Guangdong Electric Power, 2010; 23(5) : 16 (胡 平, 王志武, 李正刚. 广东电力, 2010; 23(5): 16)
[14] Sourmail T, Bhadeshia H K D H. Mater Sci Technol, 2005; 36: 23
[15] Sahlaoui H, Sidhom H. Metall Mater Trans, 2013; 44: 3077
[16] Talbot A M, Furman D E. Trans ASM, 1953; 45: 429
[17] Zhang J S, Cui H, Hu Z Q. Mater Sci Eng, 1993; 11(3): 1 (张济山, 崔 华, 胡壮麒. 材料科学与工程, 1993; 11(3): 1)
[18] Guo J T. Physics, 1982; 11: 661 (郭建亭. 物理, 1982; 11: 661)
[19] Liu Y, Deng B, Chen J S, Zhong Z Y. J Mater Eng, 1997; 7: 23 (刘 瑛, 邓 波, 陈金生, 仲增墉. 材料工程, 1997; 7: 23)
[20] Fang Y Y. Master Thesis, Dalian University of Technology, 2010 (方园园. 大连理工大学硕士学位论文, 2010)
[21] Masuyama F. ISIJ Int, 2001; 41: 612
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!