Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 930-936    
  论文 本期目录 | 过刊浏览 |
Ni75AlxV25-x合金DO22到L12相变过程异相界面的结构及其迁移特征
张明义1;陈铮1;2;王永欣1;卢艳丽1;张静1;范晓丽1
1. 西北工业大学材料学院; 西安 710072
2. 西北工业大学凝固技术国家重点实验室; 西安 710072
STRUCTURE AND MIGRATION CHARACTERISTIC OF HETEROINTERFACES DURING THE PHASE TRANSFORMATION FROM DO22 TO L12 PHASE IN Ni75AlxV25−x ALLOYS
ZHANG Mingyi 1; CHEN Zheng1;2; WANG Yongxin1; LU Yanli1; ZHANG Jing1; FAN Xiaoli 1
1. School of Materials Science and Engineering; Northwestern Polytechnical University; Xi'an 710072
2. State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
引用本文:

张明义 陈铮 王永欣 卢艳丽 张静 范晓丽. Ni75AlxV25-x合金DO22到L12相变过程异相界面的结构及其迁移特征[J]. 金属学报, 2009, 45(8): 930-936.
, , , , , . STRUCTURE AND MIGRATION CHARACTERISTIC OF HETEROINTERFACES DURING THE PHASE TRANSFORMATION FROM DO22 TO L12 PHASE IN Ni75AlxV25−x ALLOYS[J]. Acta Metall Sin, 2009, 45(8): 930-936.

全文: PDF(2594 KB)  
摘要: 

本文基于微观相场模型模拟了Ni75AlxV25-x(x=4.2, 5.0)合金中DO22(Ni3V)到L12 (Ni3Al)相变过程. 结合微观组织原子图像演化和界面处原子占位几率演化, 研究了异相间有序畴界的结构及其迁移特征, 提出了DO22 到L12相变过程的机制. 研究表明, L12与DO22相间存在5种界面, DO22 到L12相变过程中,  除了界面(002)D//(001)L之外, 其他4种界面都可以迁移; 在界面迁移过程中, 界面(100)D//(200)L和界面(100)D//(200)L?1/2[001]在迁移前后, 界面结构保持不变, 而界面(002)D//(002)L?1/2[100]迁移后形成界面(002)D//(002)L, 两者交替出现; 相变过程中, 界面迁移总是沿着最优化的路径进行原子跃迁和替换, 遵循跃迁原子数目最少、跃迁路径最短原则.

关键词 Ni75AlxV25-x合金 相变 有序畴界 界面迁移 微观相场    
Abstract

The behavior of heterointerfaces governs the evolution of microstructures during processing and heat treating, and ultimately controls the resultant morphology of transformation products and therefore the resultant physical and mechanical properties of an engineering material. Atomistic numerical simulation has been proven to be one of the most powerful methods for exploring solid interface behaviors today, especially in the case where they are hardly investigated by experimental techniques, such as atomistic interface migration mechanisms during phase transformations. The micrscpic phase–field model can be used tstudy the microstructure evolution during phase transformations and to trck the migration of an interface at atomic scale at the same time. In this paper, this model was used to investigate the interface migration during the phase transformation from DO22 (Ni3V) to L12 (Ni3Al) in Ni75AlxV25−x(x=4.2, 5.0) alloys. The DO22 phase is precipitated from the disordered fcc phase and then transformed to the L12 phase during aging process. Using the simulated microstructures and the occupation probabilities of alloy elements at interfaces, the structure and migration characteristics of ordered domain interfaces formed between DO22 and L12 phases are investigated and the mechanism of the phase transformation from DO22 to L12 is proposed. The results show that there are five kinds of heterointerface structures to be formed between DO22 and L12 phases, four of them are able to migrate during the phase transformation from DO22 to L12 except for (002)D//(001)L. The structures of (100)D//(200)L and (100)D// (200)L·1/2[001] themselves are kept unchanged with their migrating, only (002)D//(002)L and (002)D//(002)L·1/2[100] alternate with each other, and therefore, these two kinds of interfaces appear alternatively. Ni atoms present a site selective behavior during interface migration, they would jump to their nearest neighbor sites and substitute for V atoms with V atoms migrating to the inside of DO22 phases. Al atoms would migrate to interfaces and substitute for Ni or V atoms there. Such a jump and substitution mode of aoms may be an optimization way in thermodynamics and kinetics for interface migration during phase transformaion. All possible atom jump modes inducing the interface migration would obey that the number of jumping atoms during migration must be the least and the jumping distance of atoms the shortest.

Key wordsNi75AlxV25−x alloy    phase transformation    odered domain interface    interface migration    microscopic phase–field
收稿日期: 2008-11-28     
ZTFLH: 

TG111.5

 
基金资助:

国家自然科学基金项目50671084和50875217及陕西省自然科学基金项目SJ08B14和SJ08ZT05资助

作者简介: 张明义, 男, 1982年生, 博士生

[1] Massalki T B, Soffa W A, Laughlin D E. Metall Mater Trans, 2006; 37A: 825
[2] Wang S Q, Ye H Q. Curr Opin Solid State Mater, 2006; 10: 26
[3] Bos C, Sietsma J. Scr Mater, 2007; 57: 1085
[4] Bos C, Sommer F, Mittemeijer E J. Acta Mater, 2005; 53: 5333
[5] Singer H M, Singer I, Jacot A. Acta Mater, 2009; 57: 116
[6] Tateyama SShibuta Y, Suzuki TScr Mater, 2008; 59: 971
[7] Gong H R, Kong L T, Lai W S, Liu B X. Phys Rev, 2002; 66B: 104204
[8] Gong H R, Liu B X. Phys Rev, 2004; 70B: 134202
[9] Cahn J W, Mishin Y, Suzuki A. Acta Mater, 2006; 54: 4953
[10] Zhang M Y, Wang Y X, Chen Z, Zhang J, Zhao Y, Zhen H H. Acta Metall Sin, 2007, 43: 1101
(张明义, 王永欣, 陈铮, 张静, 赵彦, 甄辉辉. 金属学报, 2007; 43: 1101)
[11] Pareige C, Blavette D. Scr Mater, 2001; 44: 243
[12] Lu Y L, Chen Z, Wang Y X. Mater Lett, 2008; 62: 1385
[13] Li Y S, Chen Z, Lu Y L, Xu G D. Chin Phys, 2007; 16: 854
[14] Hou H, Zhao Y H, Zhao Y H. Mater Sci Eng, 2009; A499: 204
[15] Takeyama M, Kikuchi M. Intermetallics, 1998; 6: 573
[16] Khachaturyan A G. Theory of Structural Transformations in Solids. New York: Wiley, 1983: 1
[17] Poduri R, Chen L Q. Acta Mater, 1998; 46: 3915
[18] Poduri R, Chen L Q. Acta Mater, 1998; 46: 1719

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[9] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[10] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[11] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[12] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[13] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[14] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[15] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.