Please wait a minute...
金属学报  2008, Vol. 44 Issue (8): 937-942     
  论文 本期目录 | 过刊浏览 |
纳米加工及纳构件力学特性的分子动力学模拟
梁迎春;陈家轩;白清顺;唐玉兰;陈明君
哈尔滨工业大学精密工程研究所
ATOMISTIC SIMULATION OF NANOSTRUCTURE FOR MACHINING-TENSION PROCESS
;;;;
哈尔滨工业大学
引用本文:

梁迎春; 陈家轩; 白清顺; 唐玉兰; 陈明君 . 纳米加工及纳构件力学特性的分子动力学模拟[J]. 金属学报, 2008, 44(8): 937-942 .

全文: PDF(4780 KB)  
摘要: 利用分子动力学在原子尺度模拟了单晶Cu (111)面纳构件的纳米加工过程和加工后纳构件的拉 伸过程, 分析了纳刻划过程的缺陷行为及加工缺陷对纳构件力学特性的影响. 结 果表明: 在纳刻划过程中, 在针尖的前方和下方形成加工变形区; 当刻划深度 较浅时, 位错仅在表面与亚表面繁殖; 随着刻划深度的增加, 加工后残留的缺 陷数量增加, 纳构件的有序度及首次屈服应力下降; 加工后的纳构件内部, 尤其在针尖退出处有较高的残余应力. 对加工后的纳构件施加拉伸载荷, 由于 存在残留加工缺陷和较高残余应力, 其应力--应变曲线在弹性上升阶段有局部下降; 在塑性阶段, 由于位错繁殖及位错塞积和中间部分原子的迁移重构使应力--应变曲 线呈锯齿状逐渐下降. 纳构件断裂失效前表现为单原子相连的纳 链. 纳构件的有序度随着刻划深度的增加而下降. 在应变为0.8处, 刻划较浅的 纳构件的有序度较首次屈服处的有序度略好.
关键词 分子动力学纳米加工拉伸    
Abstract:Method of hybrid machining-tension simulations is proposed and applied to Cu (111) plane nanostructure basing on Molecular dynamics. The results show that atoms at frontage of and under tool deviate from their initial positions and form deformation zone in nanostructure. Dislocations only propagate in surface and subsurface when scratching depths are shallow, and some dislocations form dislocation loops as there exists stress gradient near tool. The number of residual defects increase and Order Degree of crystal structure decrease as scratching depths increase. There exist high residual stress in subsurface, especially near the position where tool withdraw nanostructure. After machining, tensile loads are applied to two ends of nanostructure. The response of initial loaded stage is elastic as a whole, while the stress-strain curves show local decrease as residual stress and defects from machining process result in movement of some atoms and onset of dislocations. The Yang's Modulus and yielding stress decrease as scratching depths increase. The initial plastic deformation of machined nanostructure are determined from dislocations slip and stacking faults, and conjugate slip planes ((1 1) and ( 1) slip planes) are formed at the two side of scratching groove. Dislocation slip results in the decreasing of stress, while pileup of dislocations and the forming of new slip plane result in the increasing of stress. As a result, the stress-strain curves decrease step by step. Order degree of nanostructure for first yielding and strain at 0.8 decreases as scratching depths increase, while Order degree of nanostructure for small scratching depths at the strain of 0.8 increase comparing to that of 0.045.
Key wordsMolecular dynamics    machining    tension    dislocation    residual stress    nanostructure
收稿日期: 2007-11-08     
ZTFLH:  TG146.4  
[1]Hoover W G,De Groot A J,Hoover C G,Stowers I F. Phys Rev,1990;42A:5844
[2]Shimada S,Ikawa N,Ohmori G,Tanaka H,Vchikoshi J. Ann CIRP,1992;41:117
[3]Inamura T,Takezawa N,Kumaki Y,Ikawa N.Ann CIRP, 1993,42:79
[4]Komanduri R,Chandrasekaran N,Raff L M.Wear,2000; 240:113
[5]Chandrasekaran N,NooriKhajavi A,Raff L M,Koman- duri R.Philos Mag,1998;77B:7
[6]Komanduri R,Chandrasekaran N,Raff L M.Phys Rev, 2000;61B:14007
[7]Jun S,Lee Y M,Kim S Y,Im S Y.Nanotechnology,2004; 15:1169
[8]Mulliah D,Kenny S D,Smith R.Phys Rev,2004;69B: 205407
[9]Cho M H,Kim S J,Lim D S,Jang H.Wear,2005;259 139
[10]Koh S J A,Lee H P,Lu C,Cheng Q H.Phys Rev,2005; 72B:085414
[11]Deshpande V.S,Needleman A,Van der Giessen E.Mater Sci Eng,2005;A400:401154
[12]Chen D L,Chen T C.Nanotechnology,2005;16:2972
[13]Liang H Y,Ni X G,Wang X X.Acta Metall Sin,2001;37: 83 (梁海弋,倪向贵,王秀喜.金属学报,2001;37:833)
[14]Ju S P,Lin J S,Lee W J.Nanotechnology,2004;15:1221
[15]Wu H A,Wang X X,Ni X G,Wang Y.Acta Metall Sin, 2002;38:1219 (吴恒安,王秀喜,倪向贵,王宇.金属学报,2002;38:1219)
[16]Wu H A,Wang X X,Liang H Y,Liu G Y.Acta Metall Sin,2002;38:903 (吴恒安,王秀喜,梁海弋,刘光勇.金属学报,2002;38:903)
[17]Heino P,Hakkinen H,Kaski K.Phys Rev,1998;58B:641
[18]Chang W J.Microelectron Eng,2003;65:239
[19]Potirniche G P,Horstemeyer M F,Wagner G J,Gullett P M.Int J Plast,2006;22:257
[20]Li M,Chu W Y,Gao K W,Su Y J,Qiao L J.Acta Metall Sin,2004;40:449 (李明,褚武扬,高克玮,宿彦京,乔利杰.金属学报,2004;40:449)
[21]Abraham F F,Walkup R,Gao H,Duchaineau M,de La Rubia T D,Seager M.PNAS,2002;99:5783
[22]Doyama M,Kogure Y,Nozaki T,Kato Y.Phys Res,2003; 202B:64
[23]Liang Y C,Chen J X,Chen M J,Tang Y L,Bai Q S.Chin J Chem Phys,2007;20:649
[24]Ianmura T,Takezawa N,Taniguchi N.Ann CIRP,1992; 41:121
[25]Johnson R A.Phys Rev,1988;37B:3924
[26]Johnson R A.Phys Rev,1989;39B:12554
[27]Rafii-Tabar H,Chirazi A.Phys Rep,2002;365:145
[28]Nose S A.J Chem Phys,1984;81:511
[29]Hoover W G.Phys Rev,1985;31A:1695
[30]Zimmerman J A,Kelchner C L,Klein P A,Hamilton J C, Foiles S M.Phys Rev Lett,2001;87:165507
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[4] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[5] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[6] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[7] 曹富荣, 丁鑫, 项超, 尚会会. Mg-4.4Li-2.5Zn-0.46Al-0.74Y合金高温变形流动应力、组织演变与本构分析[J]. 金属学报, 2021, 57(7): 860-870.
[8] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[9] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[10] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[13] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[14] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[15] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.