Please wait a minute...
金属学报  2008, Vol. 44 Issue (8): 961-967     
  论文 本期目录 | 过刊浏览 |
预压缩镍基单晶合金拉伸蠕变期间的组织演化
于兴福;田素贵;杜洪强;王明罡;尚丽娟;崔树森
沈阳工业大学材料科学与工程学院
Microstructure Evolution of A Pre-compression Nickel-Base Single Crystal Superalloys During Tensile Creep
XingFu Yu;;;;;
沈阳工业大学
引用本文:

于兴福; 田素贵; 杜洪强; 王明罡; 尚丽娟; 崔树森 . 预压缩镍基单晶合金拉伸蠕变期间的组织演化[J]. 金属学报, 2008, 44(8): 961-967 .
, , , , , . Microstructure Evolution of A Pre-compression Nickel-Base Single Crystal Superalloys During Tensile Creep[J]. Acta Metall Sin, 2008, 44(8): 961-967 .

全文: PDF(2411 KB)  
摘要: 采用预压应力处理使镍基单晶合金中的γ’相转变成P-型筏状结构, 通过拉伸蠕变曲线测定和组织形貌观察, 研究了该合金拉伸蠕变中的组织演化. 结果表明: 在拉伸蠕变初期, 合金中的P-型筏状γ’相转变为N-型筏状结构. 由于高温拉应力导致γ’/γ两相中元素平衡浓度发生变化及P--型筏状γ’相的不均匀粗化, 促使P-型筏状γ’相发生分解出现沟槽; 沟槽区域溶质元素化学位的提高引起的元素定向扩散是γ’相逐渐溶断成类立方体结构的主要原因. 切应力分量使立方γ’相与应力轴垂直界面的晶格收缩可排斥较大半径的Al和Ta原子, 拉伸张应力使平行于应力轴界面的晶格扩张可诱捕较大半径的Al和Ta原子, 是促使γ’相定向生长成为N--型筏状的主要原因. 其中, 在拉应力作用下类立方γ’相不同界面的应变能密度变化是元素扩散及γ’相定向粗化的驱动力.
关键词 单晶镍基合金P-型筏状结构蠕变组织演化    
Abstract:By means of pre-compression treatment, the cubic γ′phase in the single crystal nickel-base superalloy is transformed into the P-type rafted structure. An investigation has been into the microstructure evolution of the P-type rafted structure alloy during tensile creep by means of the measurement of creep curve and microstructure observation. Results show that the P-type rafted γ′phase in the alloy is transformed into the N-type structure in the initial stages of the tensile creep. In the role of the tensile stress at high temperature, the change of the elements equilibrium concentration occurs in the γ′/γ phases, which promotes the unhomogeneous coarsening of the γ′phase, and in the further the decomposition of the P-type rafted phase occurs in the alloy to appear the groove structure. It is a main reason of the directional diffusion of the elements and dissolving abruption of the P-type rafted γ′phase up to transformed into the cuboidal-like structure that the enhancement of the chemical potential energy of the solute elements occurs in the groove regions of the P-type γ′rafted structure. And then, the lattice constriction in the horizontal interfaces of the cuboidal-like γ′phase may repel out the Al, Ta atoms with bigger radius due to the role of the shearing stress, the lattice expanding in the side interfaces of the cuboidal-like γ′phase may trap the Al, Ta atoms with the bigger radius in the role of the tension stress, which promotes the directional growing of γ′phase into the N-type rafted structure. Thereinto, the change of the strain energy density in different interfaces of the cuboidal-like γ′phase is thought to be the driving force of the elements diffusion and the γ′phase directional growth.
Key wordsSingle crystal nickel-base superalloy    P-type rafted structure    creep    microstructure evolution    diffusi
收稿日期: 2007-11-23     
ZTFLH:  TG132.3  
[1]Nathal M V,Diaz J O,Miner R V.Proc Mater Res Soc Syrup,1989;133:S269
[2]MacKay R A,Ebert L J.Metall Trans,1985;16A:1969
[3]Nabarro F R N.Metall Mater Trans,1996;27A:513
[4]Mughrabi H,Scheider W,Sass V,Lang C.In:Lütjering G,Nowack H,eds.,FATIGUE'96,Proc 6th Int Fatigue Congress,Oxford:Pergamon Press,1996:789
[5]Pyczak F,Devrient B,Neuner F C,Mughrabi H.Acta Mater,2005;53:3879
[6]Peng Z F,Glatzel U,Link T,Feller-Kniepmeier M.Scr Mater,1996;34:221
[7]Nathal M V,MacKay R A,Miner R V.Metall Trans,1989; 20A:133
[8]Tian S G,Zhang J H,Zhou H H,Yang H C,Xu Y B,Hu Z Q.Mater Sci Eng,1999;A262:271
[9]Drew G L,Reed R C,Kakehi K,Rae C M F.In:Green K A,Pollock T M,Harada H eds.,Superalloy 2004,Cham- pion,PA:TMS,2004:127
[10]Shui L,Tian S G,Jin T,Hu Z Q.Mater Sci Eng,2006; A418:229
[11]Yuan C,Guo J T,Wang S H,Yang H C.J Mater Sci Technol,1998;14:219
[12]Tian S G,Chen C R,Zhang J H,Yang H C,Wu X,Xu Y B,Hu Z Q.Mater Sci Technol,2001;17:736
[13]Tian S G,Zhou H H,Zhang J H,Yang H C,Xu Y B,Hu Z Q.Mater Sci Technol,2000;16:451
[14]Tian S G,Zhang J H,Xu Y B,Hu Z Q,Yang H C.J Mater Sci Technol,2001;17:257
[15]Hao S M.Material Thermodynamics.Beijing:Chemical Industry Press,2004:121 (郝士明.材料热力学.北京:化学工业出版社,2004:121)
[16]Tian S G,Chen C R,Yang H C,Hu Z Q.Acta Metall Sin, 2000;36:465 (田素贵,陈昌荣,杨洪才,胡壮麒.金属学报,2000;36:465)
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[7] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] 张倪侦, 马昕迪, 耿川, 穆永坤, 孙康, 贾延东, 黄波, 王刚. Ag元素添加对Cu-Zr-Al基金属玻璃纳米压痕行为的影响[J]. 金属学报, 2021, 57(4): 567-574.
[9] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[10] 郭倩颖, 李彦默, 陈斌, 丁然, 余黎明, 刘永长. 高温时效处理对S31042耐热钢组织和蠕变性能的影响[J]. 金属学报, 2021, 57(1): 82-94.
[11] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[12] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[13] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[14] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[15] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.