Please wait a minute...
金属学报  2008, Vol. 44 Issue (8): 968-972     
  论文 本期目录 | 过刊浏览 |
GCr15轴承钢超高周疲劳性能与夹杂物相关性
李永德;杨振国;李守新;柳洋波;陈树铭
沈阳中科院金属研究所疲劳部
The very high cycle fatigue properties of bearing steel GCr15 prepared by two processing routes
Yongde LI;;shou xin LI;;;;
沈阳中科院金属研究所疲劳部
引用本文:

李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
, , , , . The very high cycle fatigue properties of bearing steel GCr15 prepared by two processing routes[J]. Acta Metall Sin, 2008, 44(8): 968-972 .

全文: PDF(1196 KB)  
摘要: 真空冶炼与电渣重熔2种工艺制备的GCr15轴承钢的超高周疲劳测试结果表明,电渣 重熔能更好地控制钢中夹杂尺寸及其分散性, 因此具有较好的疲劳性能.实验与理论分析表 明, 对于一定强度的材料, 疲劳萌生处的颗粒亮区(GBF)边界处的应力强度因子范围 (αK GBF$ )为一恒定值,且随材料的屈服强度增加αK GBF逐渐减小.
关键词 GCr15轴承钢超高周疲劳电渣重熔    
Abstract:Abstract: The very high cycle fatigue properties of bearing steel GCr15 prepared by two processing routes are studied in this paper. It is demonstrated that compared with vacuum melting (VM), the specimens prepared by electroslag remelting (ER) have smaller and narrow distribution of the inclusion size. Therefore, the specimens prepared by ER exhibit a better fatigue property. Experimental results and theoretical analysis demonstrate that the stress intensity factor range at the GBF boundary , ΔKGBF , keeps a constant if the steels are with an identical strength, and it will decrease with the increase of yield strength.
Key words
收稿日期: 2007-12-14     
ZTFLH:  TG142.1  
[1]Bathias C.Fatigue Fract Eng Mater Struct,1999;22:559
[2]Wang Q Y,Berard J Y,Dubarre A,Baudry G,Rathery S,Bathias C.Fatigue Fract Eng Mater Struct,1999;22: 667
[3]Murakami Y.Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions.Amsterdam & Boston:Elsevier, 2002:273
[4]Murakami Y,Nomoto T,Ueda T,Murakami Y.Fatigue Fract Eng Mater Struct,2000;23:893
[5]Murakami Y,Nomoto T,Ueda T,Murakami Y.Fatigue Fract Eng Mater Struct,2000;23:903
[6]Shiozawa K,Lu L,Ishihara S.Fatigue Fract Eng Mater Struct,2001;24:781
[7]Shiozawa K,Morii Y,Nishino S,Lu L.Int J Fatigue,2006; 28:1521
[8]Chapetti M D,Tagawa T,Miyata T.Mater Sci Eng,2003; A356:227
[9]Chapetti M D,Tagawa T,Miyata T.Mater Sci Eng,2003; A356:236
[10]Murakami Y.Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions.Amsterdam & Boston:Elsevier, 2002:35
[11]Yang Z G,Zhang J M,Li S X,Li G Y,Wang Q Y,Hui W J,Weng Y Q.Mater Sci Eng,2006;A427:167
[12]Zhang J M,Li S X,Yang Z G.,Li G Y,Hui W J,Weng Y Q.Int J Fatigue,2007;29:765
[13]Yang Z G,Zhang J M,Li S X,Li G Y,Wang Q Y,Hui W J,Weng Y Q.Acta Metall Sin,2005;41:1136 (杨振国,张继明,李守新,李广义,王清远,惠卫军,翁宇庆.金属学报,2005;41:1136)
[14]Murakami Y.Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions.Amsterdam & Boston:Elsevier, 2002:17
[15]Sakai T,Sato Y,Oguma N.Fatigue Fract Eng Mater Struct,2002;25:765
[16]Yang Z G,Li S X,Liu Y B,Li Y D,Li G Y,Hui W J, Weng Y Q.Int J Fatigue,2008;30:1016t
[1] 侯渊, 任忠鸣, 王江, 张振强, 李霞. 纵向静磁场对定向凝固GCr15轴承钢柱状晶向等轴晶转变的影响[J]. 金属学报, 2018, 54(5): 801-808.
[2] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[3] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[4] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[5] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[6] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[7] 倪自飞 孙扬善 薛烽 白晶. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究[J]. 金属学报, 2010, 46(8): 935-940.
[8] 王芳 李宝宽 . 电渣重熔过程中的电磁场和Joule热分析[J]. 金属学报, 2010, 46(7): 794-799.
[9] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[10] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[11] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[12] 吴钱林; 孙扬善; 薛烽; 周健 . 电渣重熔对TiC强化2Cr13不锈钢力学性能和断口的影响[J]. 金属学报, 2008, 44(6): 745-750 .
[13] 李永德; 李守新; 杨振国; 柳洋波; 翁宇庆; 惠卫军; 戎利建 . 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68 .
[14] 左景辉; 王中光; 韩恩厚 . Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709 .
[15] 姚卫星; 郭盛杰 . LC4CS铝合金的超高周疲劳寿命分布[J]. 金属学报, 2007, 43(4): 399-403 .