Please wait a minute...
金属学报  2008, Vol. 44 Issue (1): 34-38     
  论文 本期目录 | 过刊浏览 |
纳米晶柱热稳定性研究
周浪;周耐根;宋照东
南昌大学
A Study on Thermal Stability of Nanocrystalline Pillars
;Zhou Nai-Gen;
南昌大学
引用本文:

周浪; 周耐根; 宋照东 . 纳米晶柱热稳定性研究[J]. 金属学报, 2008, 44(1): 34-38 .
, , . A Study on Thermal Stability of Nanocrystalline Pillars[J]. Acta Metall Sin, 2008, 44(1): 34-38 .

全文: PDF(285 KB)  
摘要: 以纳米晶柱作为表面量子点的模型,以不同截面尺寸的Al 纳米晶柱为例, 对其在不同温度下的弛豫过程进行了一系列分子动力 学模拟,采用了Ercolessi 等建立的原子镶嵌势计算原子间的 相互作用力. 结果表明:对于沿相互垂直的{110}和{211} 面切割形成的近正方形截面晶柱,其截面厚度存在 一热稳定性转变临界值. 小于该值时纳米晶柱 迅速失稳,发生熔融-重结晶的过程; 大于该值时只发生缓慢的表面原子迁移重组. 两 种情况下形成的稳定结构均为由{111}和{100}面组成的 正多面体纳米岛,只是两种面的相对面积比有所不同;该临界 尺寸随温度升高而呈近线性增大. 模拟结果还显示,纳米晶 柱的高度对其稳定性没有明显影响.
关键词 纳米晶柱量子点热稳定性    
Abstract:Using nanocrystalline pillars as models of surface quantum dots, their structural stability has been studied. Molecular dynamics simulations of relaxation processes of aluminum nanocrystalline pillars of different sizes at different temperatures have been carried out. An EAM potential developed by Ercolessi was used to calculate of the inter-atomic forces. The results show that, for nanocrystalline pillars with near-square cross section and with {110} and {211} planes as side surfaces, there exists a critical size for stability transition. The nano-pillars with thickness lower than the critical size melt quickly and then re-crystallized, while those with thickness larger than the critical size have gradual structural reconfiguration by surface migration of atoms. The reconstructed stable structures, through either the melt-recrystallization or surface migration, are polyhedrons consisting of {111} and {100} surfaces, with only the relative ratio of the areas of the two types of surfaces differing from case to case. The critical size increases linearly with raising temperature. The simulations also show that the stability of the nanocrystalline pillars is insensitive to their height.
Key wordsnano crystalline pillar    quantum dot    thermal stability    molecular dynamics
收稿日期: 2007-04-25     
ZTFLH:  O485  
[1]Gilmer G H,Huang H C,Roland C.Comput Mater Sci, 1998;12:354
[2]Seifert W,Carlsson N,Miller M,Pistol M E.Prog Cryst Growth Charact Mater,1996;33:423
[3]Zhang Z K,Cui Z L,Chen K Z,Wang Y N,Ning Y P. Chin Sci Bull,1997;42:1535
[4]Goldstein A N,Echer C M,Alivisatos A P.Science,1992; 256:1425
[5]Jin-Phillipp N J,Du K,Phillipp F,Zundel M,Eberl K.J Appl Phys,2002;91:3255
[6]Leon R,Kim Y,Jagadish C,Gal M,Zou J,Cockayne D J H.Appl Phys Lett,1996;69:1888
[7]Shim J H,Lee B J,Cho Y W.Surf Sci,2002;512:262
[8]Dong H,Moon K S,Wong C P.J Electron Mater~ 2005; 34:40
[9]Wu H A.Comput Mater Sci,2004;31:287
[10]Lie W C,Acosta A S,Fujioka H,Mano T,Mitsui T, Takeuchi M,Oshima M.J Cryst Growth,2001;229:615
[11]Ercolessi F,Adams J.Europhys Lett,1994;26:583
[12]Zhou N G,Zhou L,Song G Q,Song Z D.Acta Metall Sin, 2005:41:809 (周耐根,周浪,宋固全,宋照东.金属学报,2005;41:809)
[13]Zhou N G,Zhou L,Du D X.Acta Phys Sin,2006;55:372 (周耐根,周浪,杜丹旭.物理学报,2006;55:372)
[14]Bockstedte M,Liu S J,Pankratov O,Woo C H,Huang H C.Comput Mater Sci,2002;23:85
[15]Nakamura K,Kitagawa T,Osari K,Takahashi K,Ono K. Vacuum,2006;80:761
[16]Toxvared S.Phys Rev,1993;47E:343
[17]Pehlke E,Moll N,Kley A,Scheffler M.Appl Phys,1997; 65A:525
[18]Zhang J Z,Wang Z L,Liu J,Chen S W,Liu G Y;Trans- lated by Cao M S,Cao C B.NANO-Structures Self- Assembling.Beijing:Chemical Industry Press,2004:70 (张金中,王中林,刘俊,陈少伟,刘刚玉,著;曹茂盛,曹传宝,译.自组装纳米结构.北京:化学工业出版社,2004:70)
[19]Kittel C.Introduction to Solid State Physics.Chapter 5, New York:John Wiley & Sons,Inc,2005
[20]Wen Y H,Zhu Z Z,Zhu R Z,Shao G F.Physica,2004; 25E:47
[21]Kang J W,Hwang H J.Comput Mater Sci,2003;27:305
[22]Lewis L J,Jensen P,Barrat J L.Phys Rev,1997;56B: 2248N
[1] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[4] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[5] 王晓波, 王墉哲, 程旭东, 蒋蓉. 大气条件下AlCrON基光谱选择性吸收涂层的热稳定性[J]. 金属学报, 2021, 57(3): 327-339.
[6] 彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
[7] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[8] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[9] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[10] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[11] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[12] 柳文波,张弛,杨志刚,夏志新,高古辉,翁宇庆. 表面纳米化对低活化钢的组织及其热稳定性的影响[J]. 金属学报, 2013, 49(6): 707-716.
[13] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[14] 方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
[15] 张彦坡,任丁,林黎蔚,杨斌,王珊玲,刘波,徐可为. Cu/Cu(Ge, Zr)/SiO2/Si多层膜界面可控反应及热稳定性研究[J]. 金属学报, 2013, 49(10): 1264-1268.