Please wait a minute...
金属学报  2008, Vol. 44 Issue (9): 1116-1124     
  论文 本期目录 | 过刊浏览 |
新型低碳贝氏体钢在含氯离子环境中的腐蚀行为和表观力学性能的变化
王树涛;杨善武;高克玮;沈晓安;贺信莱
北京科技大学材料物理与化学系
CORROSION BEHAVIOR AND VARIATION OF APPARENT MECHANICAL PROPERTY OF ONE NEWLY-DEVELOPED LOW CARBON BAINITIC STEEL IN ENVIRONMENT CONTAINING CHLORIDE ION
Shu-Tao WANG;;Kewei GAO;;
北京科技大学
引用本文:

王树涛; 杨善武; 高克玮; 沈晓安; 贺信莱 . 新型低碳贝氏体钢在含氯离子环境中的腐蚀行为和表观力学性能的变化[J]. 金属学报, 2008, 44(9): 1116-1124 .
, , , , . CORROSION BEHAVIOR AND VARIATION OF APPARENT MECHANICAL PROPERTY OF ONE NEWLY-DEVELOPED LOW CARBON BAINITIC STEEL IN ENVIRONMENT CONTAINING CHLORIDE ION[J]. Acta Metall Sin, 2008, 44(9): 1116-1124 .

全文: PDF(2740 KB)  
摘要: 利用周浸加速腐蚀实验与力学性能实验对比研究了新型低碳贝氏体钢、超低碳铁素 体钢以及09CuPCrNi钢这3种钢在含氯离子环境中的耐腐蚀性能与拉伸性能的变化. 与超低 碳铁素体钢和09CuPCrNi钢相比, 新型低碳贝氏体钢不仅力学性能提高了, 而且耐腐蚀性 能亦得到改善, 其腐蚀速率明显低于其余2种对比钢, 并且随着腐蚀时间的延长其优势更加 明显. 3种钢的锈层具有相近的相组成, 但新型低碳贝氏体钢的腐蚀产物颗粒最细小且锈层 最致密, 同时在接近钢基体的锈层处Cr和Cu的富集程度最明显且Cl的含量最低. 新 型低碳贝氏体钢锈层阻碍氯离子透过能力高于其余2种对比钢锈层.
关键词 低碳贝氏体钢含氯离子的环境耐腐蚀性能    
Abstract:The corrosion resistance of one newly-developed low carbon bainitic steel, ultra-low carbon ferritic steel and 09CuPCrNi steel was researched in environment containing chloride ions through alternate wet-dry accelerated corrosion test. The bainitic steel possesses both excellent mechanical property and excellent corrosion resistance. The corrosion rate of the bainitic steel was obviously lower than that of the other two steels and the gap increased with corrosion time. The phase constituents of the rust layers of the three kinds of steel were similar, while corrosion products of the bainitic steel were finest and most compact. The enrichment of Cr and Cu in the rust layer near the matrix of the bainitic steel was most obvious, while the content of chloride was lowest in the same location. The ability of rust layer in the bainitic steel to block permeation of chloride ion was higher than that of the two other steel.
Key wordsnewly-developed low carbon bainitic steel    environment containing chloride ion    corrosion resistance
收稿日期: 2007-12-17     
ZTFLH:  TG172.3  
[1]Yang D J,Shen Z S.Metal Corrosion.2nd Ed.,Beijing: Metallurgical Industry Press,1999:216 (杨德钧,沈卓身.金属腐蚀学.第2版,北京:冶金工业出版社,1999:216)
[2]General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.GB/T 4171 2000,Beijing:Standards Press of China,2000 (国家技术监督局.GB/T4171-2000,北京:中国标准出版社,2000)
[3]Wang X M,Shang C J,Yang S W,He X L.Acta Metall Sin,2002;38:661 (王学敏,尚成嘉,杨善武,贺信莱.金属学报,2002:38:661)
[4]Shang C J,Wang X M,Yang S W,He X L,Wu H B.Acta Metall Sin,2003;39:1019 (尚成嘉,王学敏.杨善武,贺信莱,武会宾.金属学报,2003;39:1019)
[5]Weng Y Q.The Ultra-Fine Crystal Steel.Beijing:Metal- lurgical Industry Press,2003:279 (翁宇庆.超细晶钢.北京:冶金工业出版社,2003:279)
[6]Zhao Z Y.The Design of Alloy Steel.Beijing:National Defence Industry Press,1999:106 (赵振业.合金钢设计.北京:国防工业出版社,1999:106)
[7]The American Society for Testing and Materials.ASTM G 44-99,1999
[8]The American Society for Testing and Materials.ASTM E 8M-03,2003
[9]Chen Y Y,Tzeng H J,Wei L I,Wang L H,Oung J C, Shih H C.Corros Sci,2005;47:1001
[10]Kamimura T,Hara S,Miyuki H,Yamashita M,Uchida H. Corros Sci,2006;48:2799
[11]Nishimura T,Katayama H,Noda K,Kodama T.Corro- sion,2000;56:935
[12]Bousselmi L,Fiaud C,Tribollet B,Triki E.Corros Sci, 1997;39:1711
[13]Bousselmi L,Fiaud C,Tribollet B,Trim E.Electrochim Acta,1999;44:4357
[14]Santana Rodrfguez J J,Santana Hernández F J,González J E.Corros Sci,2002;44:2597
[15]The General Edit Committee of the Steel Material Hand- book.The Steel Material Handbook,Vol.2:Low Alloy High Strength Steel.Beijing:Standards Press of China, 2003:32 (《钢铁材料手册》总编辑委员会.钢铁材料手册,第2卷:低合金高强度钢.北京:中国标准出版社,2003:32)
[16]Huang J Z,Zuo Y.Material Corrosion Resistance and Corrosion Data.Beijing:Chemical Industry Press,2003: 84 (黄建中,左禹.材料耐蚀性和腐蚀数据.北京:化学工业出版社,2003:84)
[17]Chen X H,Dong J H,Han E H,Ke W.Mater Lett,2007; 61:4050
[18]Xu N X,Zhao L Y,Ding C H,Zhang C D,Li R S,Zhong Q D.Corros Sci,2002;44:163
[19]Li B,Weng Y J,Li X Y.Electrochern Commun,2005;7: 1033
[20]ZhangQC,WuJS,WangJ J,Zheng W L,Chen J G,Li A B.Mater Chern Phys,2002;77:603
[21]Yamashita M,Miyuki H,Mastsuda Y,Nagano H,Misawa T.Corros Sci,1994;36:283
[22]Mizoguchi T,Ishii Y,Okada T,Kimura M,Kihira H.Cot- ros Sci,2005;47:2477
[23]Yang D J,Shen Z S.Metal Corrosion.2nd Ed.,Beijing: Metallurgical Industry Press,1999:293 (杨德钧,沈卓身金属腐蚀学.第2版,北京:冶金工业出版社,1999:293)
[24]Yu F Z.Corrosion Resistance of Metal Materials.Beijing: Science Press,1982:21 (于福洲.金属材料的耐腐蚀性.北京:科学出版社,1982:21)
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[3] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[4] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[5] 徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
[6] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[7] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[8] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[9] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[10] 朱莉,姚美意,孙国成,陈文觉,张金龙,周邦新. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响[J]. 金属学报, 2013, 49(1): 51-57.
[11] 姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
[12] 孙国成 周邦新 姚美意 谢世敬 李强. 锆合金在LiOH水溶液中腐蚀的各向异性研究[J]. 金属学报, 2012, 48(9): 1103-1108.
[13] 谢兴飞 张金龙 朱莉 姚美意 周邦新 彭剑超. Zr-0.7Sn-0.35Nb-0.3Fe-xGe合金在高温高压LiOH 水溶液中耐腐蚀性能的研究[J]. 金属学报, 2012, 48(12): 1487-1494.
[14] 张欣 姚美意 李士炉 周邦新. 加工工艺对N18锆合金在360 ℃/18.6 MPa LiOH水溶液中腐蚀行为的影响[J]. 金属学报, 2011, 47(9): 1112-1116.
[15] 兰亮云 邱春林 赵德文 李灿明 高秀华 杜林秀. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J]. 金属学报, 2011, 47(8): 1046-1054.