Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1046-1054    DOI: 10.3724/SP.J.1037.2011.00089
  论文 本期目录 | 过刊浏览 |
低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性
兰亮云1,邱春林1,赵德文1,李灿明1,2,高秀华1,杜林秀1
1. 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
2. 莱芜钢铁集团有限公司技术研发中心, 莱芜 271104
MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL
LAN Liangyun 1, QIU Chunlin 1, ZHAO Dewen 1, LI Canming 1,2, GAO Xiuhua 1, DU Linxiu 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Technical Research and Development Center, Laiwu Steel Group, Laiwu 271104
引用本文:

兰亮云 邱春林 赵德文 李灿明 高秀华 杜林秀. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性[J]. 金属学报, 2011, 47(8): 1046-1054.
, , , , , . MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. Acta Metall Sin, 2011, 47(8): 1046-1054.

全文: PDF(1321 KB)  
摘要: 根据焊接热影响区中不同亚区的热循环特征对低碳贝氏体钢进行了焊接热模拟实验.采用示波器载荷冲击试验机检测焊接热模拟试样的冲击韧性, 结合OM, SEM,TEM以及EBSD技术对模拟显微组织的观察, 分析了不同亚区的显微组织特征与冲击韧性之间的关系. 结果表明, 当冷却时间t8/5=30 s时,各亚区的裂纹形核功相差并不太大, 其值在40-70 J之间. 细晶区(FGHAZ)具有良好的止裂能力, 裂纹扩展功高达122 J; 而部分相变区(ICHAZ)和粗晶区(CGHAZ)的裂纹扩展功较小, 分别为51.8和17 J. 随t8/5的延长,各亚区的裂纹形核功和扩展功均下降, 其中CGHAZ的裂纹形核功和FGHAZ的裂纹扩展功的下降最为显著. 不同冷却速率下, M--A组元尺寸和形态的变化是影响裂纹形核功的重要因素. 对于裂纹扩展功来说, 高冷却速率下,具有高密度大角晶界的FGHAZ具有良好的抗裂纹迅速扩展的能力,但当冷却速率降低, 由于原始奥氏体晶粒长大而使裂纹扩展功下降.ICHAZ有效晶粒尺寸不均匀, 并随冷却速率的降低, 晶粒尺寸明显增大,裂纹扩展功下降. 而在CGHAZ中原始奥氏体晶粒显著粗化, 大角晶界密度的下降导致裂纹扩展功降低; 随冷却速率的降低, 原始奥氏体晶粒内的取向变得更为单一,裂纹扩展功进一步降低.
关键词 低碳贝氏体钢 焊接热影响区 冲击吸收功 M-A组元 大角晶界    
Abstract:It is generally recognized that welding heat affected zone (WHAZ) is the poorest toughness region in the welded joint of low carbon bainitic steels. The thermomechanical simulator was employed to simulate the welding thermal cycle processes of different sub–regions in WHAZ of low carbon bainitic steel in this work. The toughness of simulated specimens were tested on the instrumented drop weight impact tester with oscilloscope, and miscrostructure features were observed by means of OM, SEM, TEM and EBSD. The results showed that when cooling time (t8/5) was 30 s, the crack initiation energy of various sub–regions was similar, and the range of their values was between 40 and 70 J. However, fine grained heat affected zone (FGHAZ) exhibited excellent crack arrest properties because the impact load–time curve included wide crack ductile propagation and crack brittle propagation stages. By contrast, the crack propagation energy of intercritical heat affected zone (ICHAZ) and coarse grained heat affected zone (CGHAZ) obviously deteriorated. With the increase in cooling time, both crack initiation energy and crack propagation energy of various sub–regions decreased, in which the crack initiation energy of CGHAZ and the crack propagation energy of FGHAZ decreased notably. Under different cooling rates, the variation of morphology and size of M–A constituents was mainly responsible for the deterioration of crack initiation energy. As for crack propagation energy, the FGHAZ had a good resistance to crack propagation due to high density of high angle grain boundary. Therefore, its crack propagation energy was far superior to other sub–regions. There was uneven effective grain size in the ICHAZ and ferrite grain grew with the decease in cooling rate, which decreased the crack propagation energy. In the CGHAZ, prior austenite grains coarsened and the density of high angle grain boundaries decreased greatly, which resulted in the decrease in crack propagation energy.
Key wordslow carbon bainitic steel    heat affected zone    impact toughness    M–A constituent    high angle grain boundary
收稿日期: 2011-02-25     
基金资助:

国家自然科学基金项目51074052和中央高校基本科研业务费项目100607001资助

作者简介: 兰亮云, 男, 1983年生, 博士生
[1] Shanmugam S, Ramisetti N K, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2008; A478: 26

[2] Yao L D, Zhao X T, Zhao S X. US Pat, 0032062Al, 2010

[3] Shome M, Gupta O P, Mohanty O N. Metall Mater Trans, 2004; 35A: 985

[4] Li C, Wang Y, Han T, Han B, Li L. J Mater Sci, 2011; 46: 727

[5] Chen J H, Kikuta Y, Araki T, Yoneda M, Matsuda Y. Acta Metall, 1984; 32: 1779

[6] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46

[7] Sawai T, Wakoh M, Ueshima Y, Mizoguchi S. ISIJ Int, 1992; 32: 169

[8] Kojima A, Kiyose A, Uemori R, Minagawa M, Hoshino M, Nakashima T, Ishida K, Yasui H. Nippon Steel Technol Rep, 2004; 90: 2

[9] Bob I. Weld J, 1991; 70: 56

[10] Terada Y, Tamehiro H, Morimoto H, Hara T, Tsuru E,Asahi H. Proc OMAE, 2003: 1

[11] Rodriguez–Ibabe J M. Mater Sci Forum, 1998, 284–286: 51

[12] Guo A M,Misra R D K, Liu J B, Chen L, He X L, Jansto S J. Mater Sci Eng, 2010; A527: 6440

[13] Lambert P A, Gourgues A F, Besson J, Sturel T, Pinear A. Metall Mater Trans, 2004; 35A: 1039

[14] Gallo C, Alvarez J A, Gutierrez–Solana F, Polanco J A. Eur Struct Integr Soc, 2002; 30: 271

[15] Cvetkovski S, Adziev T, Adziev G, Sedmak A. Eur Struct Integr Soc, 2002; 30: 95

[16] Shi Y W. China Materials Engineering Canon: Materials Welding Engineering Vol.22. Beijing: Chemistry Industral Press, 2007: 128

(史耀武. 中国材料工程大典---材料焊接工程. 第22卷. 北京: 化学工业出版社, 2007: 128)

[17] Diaz–Fuentes M, Iza–Mendia A, Gutierrez I. Metall Mater Trans, 2003, 23A: 2505

[18] Lee J L, Pan Y T. Mater Sci Eng, 1991; A136: 109

[19] Biss V, Cryderman R L. Metall Trans, 1971; 2: 2267

[20] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435

[21] McMahon C J, Cohen M. Acta Metall, 1965; 13: 591

[22] Poorhaydari K, Patchett B M, Ivey D G. Mater Sci Eng, 2006; A435–436: 371

[23] Bonnevie E, Ferriere G, Ikhlef A, Kaplan D, Orain J M. Mater Sci Eng, 2004; A385: 352

[24] Lambert A, Drillet J, Gourgues A F, Sturel T, Pineau A. Sci Technol Weld Join, 2000; 5: 168

[25] Zhao M C, Hanamura T, Qiu H, Yang K. Mater Sci Eng, 2005; A395: 327

[26] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)

[27] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26

[28] Li Y, Baker T N. Mater Sci Technol, 2010; 26: 1029
[1] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[2] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[3] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[4] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[5] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[6] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[7] 高古辉 张寒 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J]. 金属学报, 2011, 47(5): 513-519.
[8] 舒玮 王学敏 李书瑞 贺信莱. 焊接热影响区针状铁素体的形核长大及其对组织的细化作用[J]. 金属学报, 2011, 47(4): 435-441.
[9] 舒玮 王学敏 李书瑞 贺信莱. 含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010, 46(8): 997-1003.
[10] 邓伟 高秀华 秦小梅 赵德文 杜林秀 王国栋. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533-540.
[11] 崔雷 杨善武 王树涛 高克玮 贺信莱. 锈层损伤对低碳贝氏体钢在含Cl-环境中腐蚀行为的影响[J]. 金属学报, 2009, 45(4): 442-449.
[12] 王六定 丁富才 王佰民 朱明 钟英良 梁锦奎. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45(3): 292-296.
[13] 王树涛; 杨善武; 高克玮; 沈晓安; 贺信莱 . 新型低碳贝氏体钢在含氯离子环境中的腐蚀行为和表观力学性能的变化[J]. 金属学报, 2008, 44(9): 1116-1124 .
[14] 谭伟; 徐滨士; 韩文政; 冯少武; 冯建林; 钟群鹏 . 22SiMn2TiB超高强度钢焊接热影响区抗Cl-腐蚀性能[J]. 金属学报, 2004, 40(2): 197-201 .
[15] 武会宾; 尚成嘉; 杨善武; 侯华兴; 马玉璞; 于功利 . 超细化低碳贝氏体钢的回火组织及力学性能[J]. 金属学报, 2004, 40(11): 1143-1150 .