Please wait a minute...
金属学报  2005, Vol. 41 Issue (4): 363-368     
  论文 本期目录 | 过刊浏览 |
两相镍基合金中相成分和含量的最优化测算法
阎光宗; 彭志方
武汉大学动力与机械学院; 武汉 430072
An Optimization Method For Estimating Phase Compositions And Amounts In Two—Phase Nickel Base Superalloys
YAN Guangzong; PENG Zhifang
College of Power and Mechanical Engineering; Wuhan University; Wuhan 430072
引用本文:

阎光宗; 彭志方 . 两相镍基合金中相成分和含量的最优化测算法[J]. 金属学报, 2005, 41(4): 363-368 .
, . An Optimization Method For Estimating Phase Compositions And Amounts In Two—Phase Nickel Base Superalloys[J]. Acta Metall Sin, 2005, 41(4): 363-368 .

全文: PDF(177 KB)  
摘要: 根据已知镍基合金成分和'相成分,运用分层宽容多目标优化法,分别计算了相成分及'相含量。优化测算过程的实现是通过建立使杠杆定律等式两端数值差最小和两相共格错配度最小的目标函数,并通过设置'相含量和基体相成分取值范围的约束条件而实现的。验证了该方法的可行性和准确性。
关键词 镍基合金相成分相含量多目标最优化    
Abstract:An optimization method was established to predict phase compositions and amounts in two--phase nickel base superalloys. Based on the compositions of alloys and their r phase, r phase compositions and r phase amounts were calculated with the use of the layered multi objective optimization algorithmic approach with tolerance. The optimization process was realized by establishing two relating objective functions and the corresponding constrained conditions. The results verified the feasibility and the accuracy of the present method.
Key wordsnickel base superalloy    phase composition    phase amount
收稿日期: 2004-05-27     
ZTFLH:  TG113  
[1]Saunders N. Superslloys 1996. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, eds., Warrendale: TMS, 1996: 101
[2]Enomoto M, Harada H. Metall Trans, 1989; 20A: 649
[3]Enomoto M, Harada H, Yamazaki M. CALPHAD, 1991; 15: 143
[4]Harada H, Ohno K, Yokokawa T, Yamazaki M. Superal loys 1988. In: Reichman S, Duhl D N, Maurer G, An tolivich S, Lund C, eds., Warrendale, PA: AIME, 1988: 733
[5]Saito Y. Mater Sci Eng, 1997; A223: 114
[6]Nathal M V, Ebert L J. Metall Trans, 1985; 16A: 1849
[7]Glatzel U, Feller-Kniepmeier M. Scr Metall Mater, 1991; 25: 1845
[8]Melow T, Zhu J W, Wahi R P. Z Metallkd, 1994; 85: 9
[9]Lempke H, Wang Y, Mukherji D, Chen W, Wiedenmann A, Wahi R P. Z Metallkd, 1994; 87: 286
[10]Hu Z Q, Peng P, Liu Y, Jin T, Sun X F, Guan H R. Acta Metall Sin, 2002; 38: 1121 (胡壮麒,彭平,刘轶,金涛,孙晓峰,管恒荣.金属学 报, 2002;38:1121)
[11]Caron P. Superalloys 2000. In: Pollock T M, Green K A, Kissinger, eds., Warrendale, PA; TMS, 2000: 737
[12]Chen G L. Superalloys. Beijing: Metallurgy Industry Press, 1988: 5 (陈国良.高温合金学.北京:冶金工业出版社, 1988:5)
[13]Xie K X, Han L X, Lin Y L. Method of Optimization Algorithms. Tianjin: Tianjin University Press, 1997: 1 (解可新,韩立兴,林友联.最优化方法天津:天津大学出版 社,1997:1)
[14]Glatzel U. Micro structure and Internal Strains of Unde formed and Creep Deformed Samples of a Nickel-Base Superalloy. Berlin: Verlag Dr. Koster, 1994: 10
[15]Blavette D, Garon, P, Khan T. Scr Metall Mater, 1986; 20: 1395
[16]Pollock T M, Argon A S. Acta Metall Mater, 1994; 42: 1859
[17]Blavette D, Bostel A. Acta Metall, 1984; 32: 811
[18]Kuhn H A, Biermann H, Ungar T, Mughrabi H. Acta Metall Mater, 1991; 39: 2783
[19]Harf F H. Metall Trans, 1985; 16A: 993
[20]Svetlov I L, Golovko B A, Epinshin A I, Abalakin N P. Scr Metall Mater, 1992; 26: 1353
[21]Dreshfield R L, Wallace J F. Metall Trans, 1974; 5: 71
[22]Chen Z Q, Han Y F, Zhong Z G, Wei P Y, Yan M G. Chin J Aeronaut, 1999; 12(2): 121
[23]Broz P, BruslJ, Svoboda M, Kroupa A. Mater Sci Eng, 2002; A324: 28
[1] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[2] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[3] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[4] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[5] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[6] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[7] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[8] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[9] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
[10] 韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.
[11] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[12] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[13] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[14] 谢君,田素贵,刘姣,周晓明,苏勇. FGH95粉末镍基合金蠕变期间位错网的形成与分析[J]. 金属学报, 2013, 49(7): 838-844.
[15] 张姝,田素贵,于慧臣,于莉丽,于兴福. [111]取向镍基单晶合金在蠕变期间组织演化的有限元分析[J]. 金属学报, 2012, 48(5): 561-568.