Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 217-234    DOI: 10.11900/0412.1961.2025.00222
  研究论文 本期目录 | 过刊浏览 |
低碳钢预制涡流搅拌摩擦焊工艺研究
王启勇1, 李晓博1, 刘小超1,2(), 王心成1,2, 张泰瑞1, 倪中华1,2, 陈彪3
1 东南大学 机械工程学院 南京 211189
2 东南大学南通海洋高等研究院 南通 226010
3 西北工业大学 凝固技术全国重点实验室 西安 710072
Process of Prefabricated Vortex Flow-Based Friction Stir Welding for Low Carbon Steel
WANG Qiyong1, LI Xiaobo1, LIU Xiaochao1,2(), WANG Xincheng1,2, ZHANG Tairui1, NI Zhonghua1,2, CHEN Biao3
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2 Advanced Ocean Institute of Southeast University Nantong, Nantong 226010, China
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王启勇, 李晓博, 刘小超, 王心成, 张泰瑞, 倪中华, 陈彪. 低碳钢预制涡流搅拌摩擦焊工艺研究[J]. 金属学报, 2026, 62(1): 217-234.
Qiyong WANG, Xiaobo LI, Xiaochao LIU, Xincheng WANG, Tairui ZHANG, Zhonghua NI, Biao CHEN. Process of Prefabricated Vortex Flow-Based Friction Stir Welding for Low Carbon Steel[J]. Acta Metall Sin, 2026, 62(1): 217-234.

全文: PDF(7144 KB)   HTML
摘要: 

为了解决难焊钢材搅拌摩擦焊面临的搅拌工具磨损和断裂问题,优化接头显微组织及力学性能,本工作提出了预制涡流搅拌摩擦焊(PF-VFSW)新工艺,并以3 mm厚Q195钢为模型材料,针对新工艺进行了系统性探索研究,重点讨论了套筒材料、转速、焊速及搅拌工具倾角对接头宏观形貌、微观组织及力学性能的影响。结果表明,对于无倾角的WC-Co套筒,其最优转速、焊速组合为500 r/min、20 mm/min,所获接头底部存在沿晶界分布的弱连接缺陷,且随着与接头顶端距离的增加,氧化物分布变广,未接合区域面积扩大。使用W-Re套筒并设定1°的焊接倾角后,适当调控工艺参数即可消除接头底部弱连接缺陷,对应最优工艺参数组合为转速300 r/min、焊速20 mm/min,搅拌区中剧烈塑性变形导致的动态回复和连续/不连续动态再结晶行为使其再结晶比例较母材有所降低,小角度晶界比例显著升高,同时晶粒得到明显细化,搅拌区晶粒尺寸最小为3.8 μm,较母材降低80.51%。采用WC-Co和W-Re套筒所获接头的显微硬度较母材分别提高了6.44%和18.90%,抗拉强度分别提高了1.74%和5.91%,达到317.26和330.25 MPa,接头连接效率均可达100%。以上结果表明,PF-VFSW技术可实现低碳钢的低成本、高质量焊接。

关键词 搅拌摩擦焊Q195钢工艺参数微观结构力学性能预制涡流    
Abstract

At present, the demand for hard-to-weld steels, such as high-nitrogen stainless steel, oxide-dispersion-strengthened steel, and twinning-induced plasticity steel, in the high-end equipment manufacturing industry has gradually increased. Low-cost and reliable joining is a prerequisite for meeting the diverse application requirements of these steels. Conventional fusion welding of hard-to-weld steels often produces metallurgical defects, including pores and cracks. In contrast, friction stir welding (FSW), a solid-state process performed entirely below the material's melting point, effectively avoids such defects. Moreover, its combined thermal-mechanical action promotes the formation of high-performance joints. However, the high temperatures and contact stresses associated with FSW of hard-to-weld steels can lead to tool wear and fracture. To address this limitation, this study proposes a novel prefabricated vortex flow-based FSW (PF-VFSW) process. A systematic investigation was conducted using 3-mm-thick Q195 steel to evaluate the effects of holder material, rotational speed, welding speed, and tool tilt angle on the joint's macroscopic morphology, microstructure, and mechanical properties. For a WC-Co holder with 0° tilt, the optimal rotation and welding speeds were 500 r/min and 20 mm/min. However, kissing-bond defects were observed at the bottom of the joint, with oxide distribution and unbonded regions increasing with distance from the top of the joint. Using a W-Re holder with a 1° tilt and adjusted process parameters eliminated these defects, with the optimal rotation and welding speeds being 300 r/min and 20 mm/min. Severe plastic deformation in the stir zone induced dynamic recovery and both continuous and discontinuous dynamic recrystallization, reducing the recrystallization fraction compared to the base material. The proportion of low-angle grain boundaries increased markedly, accompanied by pronounced grain refinement. The minimum average grain size in the stir zone was 3.8 μm, representing an 80.51% reduction relative to the base material. The microhardnesses of joints produced with WC-Co and W-Re holders increased by 6.44% and 18.90%, respectively, compared to the base material. Tensile strength improved by 1.74% to 317.26 MPa and 5.91% to 330.25 MPa, respectively, achieving a joint efficiency of 100% in terms of tensile strength relative to the base material. These results demonstrate that PF-VFSW is an effective, low-cost method for producing high-quality joints in Q195 low-carbon steel.

Key wordsfriction stir welding    Q195 steel    process parameter    microstructure    mechanical property    prefabricated vortex
收稿日期: 2025-08-08     
ZTFLH:  TG456  
基金资助:国家自然科学基金项目(52275316);西北工业大学凝固技术全国重点实验室开放课题项目(SKLSP202509);东南大学至善青年学者项目(2242025RCB0002);东南大学南通海洋高等研究院重点项目(KP202409)
通讯作者: 刘小超,xcliu1990@seu.edu.cn,主要从事先进高强度金属材料搅拌摩擦焊接、大差异性异质金属增材制造等研究
作者简介: 王启勇,男,1997年生,博士生
图1  预制涡流搅拌摩擦焊(PF-VFSW)工艺流程、测试试样在接头对应位置以及试样尺寸的示意图
AlloyCoefficient of frictionThermal conductivity / (W·m-1·K-1)Flow stress
WC-(13, 17)Co0.4[25]124-130[26]620-750 MPa at 900 oC[27]
W-25Re0.52[28]55-65[29]500-800 MPa at 1000 oC[29]
表1  WC-Co和W-Re系合金的性能[25~29]

Sample

Holder material

Rotation

speed

r·min-1

Welding

speed

mm·min-1

Tilt angle

(°)

#1WC-Co300800
#2WC-Co300500
#3WC-Co350500
#4WC-Co500300
#5WC-Co500200
#6W-Re500200
#7W-Re500201
#8W-Re700201
#9W-Re300201
表2  试样名称及对应的套筒材质和工艺参数
图2  Q195退火态冷轧钢板母材(BM)的EBSD分析
图3  使用WC-Co套筒在不同工艺参数下获得的接头宏观形貌
图4  不同焊速区间下试样#4和#5截面的OM像
图5  试样#5顶部位置、中部位置及底部弱连接区域的SEM像
图6  使用W-Re套筒在不同工艺参数下所获接头的宏观形貌、背部缺陷三维形貌及缺陷深度分布
图7  使用W-Re套筒在不同工艺参数下所获接头的宏观形貌
图8  使用W-Re套筒在不同工艺参数下所获接头截面的OM像
图9  使用WC-Co和W-Re套筒在各自最优参数条件下制备接头不同位置的SEM像
图10  采用WC-Co和W-Re套筒在各自最优参数条件下所获接头的反极图和极图
Sample

Grain size

μm

LAGB fraction

%

ρGND

m-2

BM19.55.696.70 × 1013
SZ-U-114.647.421.40 × 1014
SZ-L-112.021.921.09 × 1014
SZ-U-23.849.571.28 × 1014
SZ-L-213.326.458.48 × 1013
表3  各试样的平均晶粒尺寸、小角度晶界(LAGB)比例和几何必需位错密度(ρGND)
图11  各试样再结晶晶粒体积分数和局部取向差(KAM)分布
图12  WC-Co和W-Re套筒在最优参数条件下所获接头横截面的显微硬度分布云图及曲线
图13  BM试样以及WC-Co和W-Re套筒制备试样的工程应力-应变曲线及拉伸性能
SamplesUTS / MPaEL / %
BM312.31 ± 5.1457.91 ± 3.83
SZ-U-1457.93 ± 65.9622.32 ± 15.31
SZ-L-1311.70 ± 42.556.84 ± 3.49
SZ-U-2577.23 ± 42.4614.79 ± 3.53
SZ-L-2404.81 ± 18.4444.19 ± 3.48
表4  BM微型试样以及WC-Co和W-Re套筒制备微型试样SZ上下部区域的拉伸性能
图14  WC-Co套筒制备试样典型断口形貌的SEM像
图15  W-Re套筒所获试样典型断口形貌的SEM像
图16  PF-VFSW工艺示意图
图17  WC-Co和W-Re套筒制备试样的断裂机制示意图
[1] Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Mater. Des., 2016, 110: 802
[2] Zheng Y, Wei L F, Yang C X, et al. Research progress and prospects of ODS steel welding technology [J]. Trans. China Weld. Inst., 2024, 45(12): 117
[2] 郑 勇, 魏连峰, 杨灿湘 等. ODS钢焊接技术研究进展与展望 [J]. 焊接学报, 2024, 45(12): 117
[3] Torganchuk V, Vysotskiy I, Malopheyev S, et al. Microstructure evolution and strengthening mechanisms in friction-stir welded TWIP steel [J]. Mater. Sci. Eng., 2019, A746: 248
[4] Xie X, Wan Y B, Zhong M, et al. Optimizing microstructures and mechanical properties of electro-gas welded metals for EH36 shipbuilding steel treated by CaF2-TiO2 fluxes [J]. Acta Metall. Sin., 2025, 61: 998
[4] 谢 旭, 万一博, 钟 明 等. CaF2-TiO2焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控 [J]. 金属学报, 2025, 61: 998
[5] Zhang H, Lin S B, Wu L, et al. Current progress and prospect of friction stir welding [J]. Trans. China Weld. Inst., 2003, 24(3): 91
[5] 张 华, 林三宝, 吴 林 等. 搅拌摩擦焊研究进展及前景展望 [J]. 焊接学报, 2003, 24(3): 91
[6] Dawson H, Serrano M, Hernandez R, et al. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures [J]. Mater. Sci. Eng., 2017, A693: 84
[7] Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
[8] Miyano Y, Fujii H, Sun Y F, et al. Mechanical properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel [J]. Mater. Sci. Eng., 2011, A528: 2917
[9] Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel [J]. Mater. Des., 2015, 84: 291
[10] Yabuuchi K, Tsuda N, Kimura A, et al. Effects of tool rotation speed on the mechanical properties and microstructure of friction stir welded ODS steel [J]. Mater. Sci. Eng., 2014, A595: 291
[11] Dawson H, Serrano M, Cater S, et al. Impact of friction stir welding on the microstructure of ODS steel [J]. J. Nucl. Mater., 2017, 486: 129
[12] Lee S J, Sun Y F, Fujii H. Stacking-fault energy, mechanical twinning and strain hardening of Fe-18Mn-0.6C-(0, 1.5)Al twinning-induced plasticity steels during friction stir welding [J]. Acta Mater., 2018, 148: 235
[13] Ding Y X, Wang Y Q, Guo S, et al. Effect of rapid cooling on microstructure and mechanical properties in friction stir welded twin-induced plasticity steel [J]. Met. Mater. Int., 2025, 31: 1392
[14] Liu F C, Hovanski Y, Miles M P, et al. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties [J]. J. Mater. Sci. Technol., 2018, 34: 39
[15] Li Y J, Fu R D. Friction stir welding and processing of steels [J]. J. Mech. Eng., 2015, 51(22): 1
[15] 李艺君, 付瑞东. 钢搅拌摩擦焊接及加工研究进展 [J]. 机械工程学报, 2015, 51(22): 1
[16] Tiwari A, Pankaj P, Biswas P, et al. Characterization of ultrafine grain tungsten carbide tool and its wear investigation in friction stir welding of HSLA steel [J]. Tribol. Int., 2023, 186: 108579
[17] Zhou L, Zhang R X, Shu F Y, et al. Microstructure and mechanical properties of friction stir welded joint of Q235 steel [J]. Trans. China Weld. Inst., 2019, 40(3): 80
[17] 周 利, 张仁晓, 舒凤远 等. Q235钢搅拌摩擦焊接头微观组织与力学性能分析 [J]. 焊接学报, 2019, 40(3): 80
[18] Kong J, Chen C, Wang K H, et al. Progress in research of tool materials for friction stir welding of high-strength metals [J]. Weld. Joining, 2018, (10): 9
[18] 孔 见, 陈 橙, 王克鸿 等. 钛和钢等高强度合金搅拌摩擦焊搅拌头用材的研究进展 [J]. 焊接, 2018, (10): 9
[19] Zhu X X, Lv W Y, Cui S Q, et al. A comparative study on the microstructure and mechanical properties of friction stir welded martensitic ultra-high-strength steel joints using PCBN and WC-Co tools [J]. Arch. Civ. Mech. Eng., 2025, 25: 191
[20] Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
[20] 薛 鹏, 张星星, 吴利辉 等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222
[21] Liu X C, Zhen Y Q, Shen Z K, et al. A modified friction stir welding process based on vortex material flow [J]. Chin. J. Mech. Eng., 2020, 33: 90
[22] Li W T, Zhang T R, Liu X C, et al. Lap joining of Ti6Al4V titanium alloy by vortex flow-based friction stir welding [J]. Mater. Charact., 2024, 218: 114462
[23] Liu X C, Zhang P Y, Li W T, et al. Microstructure and mechanical properties of TC4 titanium alloy joint fabricated by vortex flow-based friction stir welding [J]. Chin. J. Mech. Eng., 2024, 37: 159
[24] Li W T, Wang X C, Liu X C, et al. Elucidation of microstructure, mechanical properties and wear behavior in double-sided vortex flow-based friction stir welds of medium-thick titanium alloy plates [J]. J. Mater. Process. Technol., 2025, 342: 118951
[25] Khuengpukheiw R, Wisitsoraat A, Saikaew C. Wear behaviors of HVOF-sprayed NiSiCrFeB, WC-Co/NiSiCrFeB and WC-Co coatings evaluated using a pin-on-disc tester with C45 steel pins [J]. Wear, 2021, 484-485: 203699
[26] Wang H T, Webb T, Bitler J W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite [J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 170
[27] Teppernegg T, Klünsner T, Kremsner C, et al. High temperature mechanical properties of WC-Co hard metals [J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 139
[28] Iqbal Z, Merah N, Nouari S, et al. Investigation of wear characteristics of spark plasma sintered W-25wt%Re alloy and W-25wt%Re-3.2wt%HfC composite [J]. Tribol. Int., 2017, 116: 129
[29] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools [J]. Sci. Technol. Weld. Joining, 2011, 16: 325
[30] Ray R K, Jonas J J, Hook R E. Cold rolling and annealing textures in low carbon and extra low carbon steels [J]. Int. Mater. Rev., 1994, 39: 129
[31] Yang P, Li Z C, Mao W M, et al. Formation of the {111}112 annealing texture in steels [J]. Trans. Mater. Heat Treat., 2009, 30(3): 46
[31] 杨 平, 李志超, 毛卫民 等. 钢中{111}112再结晶织构的形成 [J]. 材料热处理学报, 2009, 30(3): 46
[32] Emani S V, dos Santos A F C R, Shaw L L, et al. Investigation of microstructure and mechanical properties at low and high temperatures of WC-6 wt%Co [J]. Int. J. Refract. Met. Hard Mater., 2016, 58: 172
[33] Liu H H, Li J X, Huang H, et al. Elucidation of interface joining mechanism during pressure-controlled Joule-heat forge welding of high-carbon steel via experimental and numerical approaches [J]. J. Mater. Process. Technol., 2025, 339: 118824
[34] Sato Y S, Takauchi H, Park S H C, et al. Characteristics of the kissing-bond in friction stir welded Al alloy 1050 [J]. Mater. Sci. Eng., 2005, A405 : 333
[35] Choi D H, Lee C Y, Ahn B W, et al. Frictional wear evaluation of WC-Co alloy tool in friction stir spot welding of low carbon steel plates [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 931
[36] Dai Q L, Wang X Y, Hou Z G, et al. Microcavities accompanying a zigzag line in friction stir welded A6082-T6 alloy joint [J]. Sci. Technol. Weld. Joining, 2015, 20: 68
[37] Tang T X, Shi Q Y, Zhou J, et al. Kissing bond defects in inertia friction welds of IN718 alloys: Experiment and prediction [J]. J. Mater. Process. Technol., 2025, 338: 118786
[38] Zhou N, Song D F, Qi W J, et al. Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds [J]. Mater. Sci. Eng., 2018, A719: 12
[39] Tang W S, Yang X Q, Li S L, et al. Zigzag line defect in friction stir butt-weld of ferritic stainless steel [J]. Mater. Lett., 2021, 288: 129361
[40] Fonda R W, Knipling K E. Texture development in friction stir welds [J]. Sci. Technol. Weld. Joining, 2011, 16: 288
[41] Liu X C, Sun Y F, Nagira T, et al. Strain rate dependent micro-texture evolution in friction stir welding of copper [J]. Materialia, 2019, 6: 100302
[42] Liu X C, Sun Y F, Nagira T, et al. Investigation of temperature dependent microstructure evolution of pure iron during friction stir welding using liquid CO2 rapid cooling [J]. Mater. Charact., 2018, 137: 24
[43] Choi H N, Fujii H, Lee S J. Dynamic recrystallization, textural evolution, and strengthening mechanism of medium-Mn steel subjected to friction-stir welding (FSW) [J]. Mater. Charact., 2025, 227: 115307
[44] Liu G L, Liu K, Zhang M H, et al. Effect of cold rolling reduction ratio on microstructure and mechanical properties of Fe-10Mn-4Al-0.4C steel containing δ ferrite [J]. Mater. Sci. Eng., 2023, A867: 144715
[45] Humphreys J, Rohrer G S, Rollett A. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Amsterdam: Elsevier, 2017: 215
[46] Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 149
[46] 钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 149
[47] Wang H D, Wang K S, Wang W, et al. Microstructure and mechanical properties of low-carbon Q235 steel welded using friction stir welding [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1556
[48] Liu X C, Sun Z. Numerical simulation of vortex-friction stir welding based on internal friction between identical materials [J]. Int. J. Heat Mass Transfer, 2022, 185: 122418
[49] Paul S K, Raj A, Biswas P, et al. Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate [J]. Mater. Des., 2014, 57: 211
[1] 陆善平, 孙健. 高强钢焊缝金属组织设计与强韧化机理研究进展[J]. 金属学报, 2026, 62(1): 1-16.
[2] 韩鸿华, 史清宇, 杨诚乐, 孔德帅, 陈高强. 铝合金搅拌摩擦焊热--流耦合仿真及材料迁移轨迹解析[J]. 金属学报, 2026, 62(1): 148-158.
[3] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[4] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[5] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[6] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[7] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[8] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[9] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[10] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[11] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[12] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[13] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[14] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[15] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.