Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 235-252    DOI: 10.11900/0412.1961.2025.00231
  研究论文 本期目录 | 过刊浏览 |
冷丝辅助旋转/摇动电弧窄间隙MAG焊缝成形特性及接头组织性能演变机制
李红1, 姜玉清1,2, 曹玉鹏1, 王加友1(), 刘澍彬1()
1 江苏科技大学 材料科学与工程学院 镇江 212100
2 沙洲职业工学院 智能制造学院 张家港 215699
Weld Formation Characteristics and the Evolution Mechanisms of Joint Microstructure and Mechanical Properties for Rotating/Swing Arc Narrow Gap MAG Welding Assisted by Cold Wire
LI Hong1, JIANG Yuqing1,2, CAO Yupeng1, WANG Jiayou1(), LIU Shubin1()
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
2 School of Intelligent Manufacturing, Shazhou Professional Institute of Technology, Zhangjiagang 215699, China
引用本文:

李红, 姜玉清, 曹玉鹏, 王加友, 刘澍彬. 冷丝辅助旋转/摇动电弧窄间隙MAG焊缝成形特性及接头组织性能演变机制[J]. 金属学报, 2026, 62(1): 235-252.
Hong LI, Yuqing JIANG, Yupeng CAO, Jiayou WANG, Shubin LIU. Weld Formation Characteristics and the Evolution Mechanisms of Joint Microstructure and Mechanical Properties for Rotating/Swing Arc Narrow Gap MAG Welding Assisted by Cold Wire[J]. Acta Metall Sin, 2026, 62(1): 235-252.

全文: PDF(6988 KB)   HTML
摘要: 

为解决深坡口焊接中坡口间隙对冷丝摆幅限制的问题,并通过优化窄间隙焊接工艺改善接头组织和性能,提高实用性,本工作提出了可变幅摆动冷丝辅助的旋转/摇动电弧窄间隙熔化极活性气体保护焊接方法,研究了电弧旋转频率、冷丝送进速率以及冷丝与摇动电弧的横向摆动协同率(η)对焊缝成形和焊接效率的影响规律,阐明了窄间隙焊接接头组织和力学性能的演变机制。结果表明,在小摆幅(η ≤ 0.5)冷丝辅助下,旋转/摇动电弧焊缝成形稳定,焊接效率可分别提高25.7%和44.2%;与旋转电弧焊相比,摇动电弧对熔池后方无重复加热作用,缩窄粗晶热影响区,冷丝吸热作用可进一步加快熔池冷却,显著细化焊缝晶粒、韧化粗晶热影响区,在相应的组织类型和晶粒尺寸因素主导下,焊缝强度可增大6.0%、熔合线区冲击功可显著提高53.8%,协同提升了窄间隙焊接效率和性能,从而促进高质高效窄间隙焊接工艺的应用。

关键词 窄间隙焊接摇动电弧旋转电弧冷丝焊缝成形微观组织    
Abstract

Narrow gap gas metal arc welding (GMAW) is increasingly applied in the manufacturing of thick-walled structures, such as large ships, offshore equipment, and pressure pipelines. Previous research focused on the improving weld formation and welding efficiency in this process but seldom addressed the correlations among the welding process, joint microstructure, and mechanical properties. The study aims to modify the microstructure and properties of the joint while overcoming the limitations of groove gap on cold wire swaying amplitude in deep-groove welding, thereby enhancing the practicality of the process. A rotating/swing arc narrow gap metal active gas welding assisted by a cold wire with variable swaying amplitude is proposed. Effects of arc rotation frequency, cold wire feeding speed, and the horizontal oscillation cooperative rate between the cold wire and the swing arc (η) on weld formation and welding efficiency are then investigated. Additionally, the evolution mechanisms of the microstructure and mechanical properties of cold wire-assisted rotating/swing arc narrow gap welding joints are clarified. Experimental results show that the cold wire-assisted rotating/swing arc processes yield stable weld formation and increase the welding efficiency by 25.7% and 44.2% at η ≤ 0.5, respectively. Compared to the rotating arc process, the swing arc process achieves greater penetrations into the groove sidewalls and weld bottom even at smaller swaying amplitudes of the cold wire; the swing arc has no the reheating effect on the rear of the molten pool, thereby narrowing the coarse-grain heat-affected zone (CGHAZ). This nonreheating effect, combined with the heat absorption effect of the cold wire, accelerates the molten pool cooling, substantially refining the weld grain size and toughening the CGHAZ. Owing to the dominant factors of the microstructure type and grain size, impact energy near the fusion line increases by 53.8% while weld strength rises by 6.0%. Consequently, the two cold wire-assisted processes concurrently improve welding efficiency and joint performance, advancing the application of high-quality, high-efficiency methods in narrow gap welding.

Key wordsnarrow gap welding    swing arc    rotating arc    cold wire    weld formation    microstructure
收稿日期: 2025-08-13     
ZTFLH:  TG444  
基金资助:国家自然科学基金项目(52275340);国家自然科学基金项目(51875268)
通讯作者: 王加友,jywang@just.edu.cn,主要从事高效电弧焊接技术及装备研究
刘澍彬,shubin_l18@just.edu.cn,主要从事高效焊接工艺及接头组织性能研究
作者简介: 李 红,女,1984年生,博士生
第一联系人:姜玉清(共同第一作者),男,1992年生,博士
图1  冷丝辅助旋转/摇动电弧窄间隙熔化极活性气体保护(MAG)焊接系统原理图
图2  窄间隙焊接试件尺寸及取样示意图
MaterialCMnSiCrNiVPSCuMoAlFe
DH360.1581.0180.3940.0400.0700.0010.0100.0160.0240.0170.019Bal.
ER50-60.0701.5000.8800.0200.0100.0020.0150.0080.0600.0040.004Bal.
表1  DH36母材和ER50-6焊丝的主要化学成分 (mass fraction / %)
ParameterValueUnit
Average of Ia~330A
Average of arc voltage Ua~32V
Vw4.25mm·s-1
Arc swing frequency fS4Hz
r17.36mm
Arc swing amplitude darc8mm
Arc at-sidewall staying time ts60ms
Arc rotating frequency fR25-100Hz
r23.6mm
Cold wire swaying amplitude daw0-4mm
Cold wire feeding rate Vf20-5m·min-1
表2  焊接参数
图3  冷丝辅助摇动/旋转电弧运动轨迹
图4  电弧旋转频率(fR)对加热间隔(δ)及左右极点电弧瞬时线能量(qleft和qright)的影响
图5  冷丝送进速率(Vf2)和冷丝摆幅(daw)对摇动电弧窄间隙MAG单层焊缝成形的影响
图6  Vf2对摇动电弧焊接熔敷速率(Wpt)及其增长率(ζ)的影响
图7  Vf2和fR对旋转电弧窄间隙MAG单层焊缝成形的影响
图8  冷丝辅助旋转/摇动电弧窄间隙MAG多层焊接头形貌(L1~L6分别表示第1至第6层焊缝)
图9  窄间隙多层焊第三层焊缝L3右侧熔合线(FL)区微观组织的OM像
图10  窄间隙多层焊第三层焊缝右侧FL区组织的EBSD分析结果
图11  窄间隙多层焊第三层焊缝及其形成的再热热影响区RHAZ32微观组织的OM像
图12  窄间隙多层焊第三层焊缝非再热区WMC3的EBSD分析结果
图13  窄间隙多层焊第三层焊缝粗晶再热热影响区CGRHAZ32的EBSD分析结果
图14  窄间隙焊接接头的焊缝拉伸实验结果
图15  不同窄间隙多层焊接头0 ℃冲击功
[1] Zhang F J, Guo J L, Zhang G D. Comparison of technical and economic characteristics of common arc welding process for heavy plate [J]. Electr. Weld. Mach., 2017, 47(5): 144
[1] 张富巨, 郭嘉琳, 张国栋. 厚板常用弧焊工艺的技术和经济特性比较 [J]. 电焊机, 2017, 47(5): 144
[2] Wu Y J, Wang J Y, Xu G X, et al. Numerical analysis of residual stress in swing-arc narrow-gap gas metal arc welding [J]. Materials, 2025, 18: 803
[3] Liu H S, Xue R L, Zhou J P, et al. Implementation of a two-stage algorithm for NG-GMAW seam tracking and oscillation width adaptation in pipeline welding [J]. Sci. Technol. Weld. Joinning, 2023, 28: 992
[4] Teng B, Fan C L, Xu K, et al. Research status and application progress of narrow gap welding technology for thick plates [J]. Trans. China Weld. Inst., 2024, 45(1): 116
[4] 滕 彬, 范成磊, 徐 锴 等. 厚板窄间隙焊接技术研究现状与应用进展 [J]. 焊接学报, 2024, 45(1): 116
[5] Xu W H, Yang Q F, Xiao Y F. Research status of sidewall fusion control technology in narrow gap welding [J]. J. Netshape Form. Eng., 2020, 12(4): 47
[5] 徐望辉, 杨清福, 肖逸峰. 窄间隙焊接侧壁熔合控制技术的研究现状 [J]. 精密成形工程, 2020, 12(4): 47
[6] Kang Y H, Na S J. Characteristics of welding and arc signal in narrow groove gas metal arc welding using electromagnetic arc oscillation [J]. Weld. J., 2003, 82: 93
[7] Wang J Y, Zhu J, Fu P, et al. A swing arc system for narrow gap GMA welding [J]. ISIJ Int., 2012, 52: 110
[8] Li W H, He C F, Chang J S, et al. Modeling of weld formation in variable groove narrow gap welding by rotating GMAW [J]. J. Manuf. Process., 2020, 57: 163
[9] Murayama M, Oazamoto D, Ooe K. Narrow gap gas metal arc (GMA) welding technologies [J]. JFE Technol. Rep., 2015, 20: 147
[10] Cheng Y X, Jiang X X, Gou N N, et al. Research status of ultra-narrow gap arc welding with flux band confinement [J]. Electr. Weld. Mach., 2025, 1-11 [2025-11-10].
[10] 程雨潇,蒋小霞,苟宁年,等.焊剂带约束电弧超窄间隙焊接研究现状[J/OL].电焊机, 2025, 1-11 [2025-11-10].
[11] Sugitani Y, Kobayashi Y, Murayama M. Development and application of automatic high speed rotation arc welding [J]. Weld. Int., 1991, 5: 577
[12] Wang J Y, Ren Y S, Yang F, et al. Novel rotation arc system for narrow gap MAG welding [J]. Sci. Technol. Weld. Joinning, 2007, 12: 505
[13] Yang C L, Guo N, Lin S B, et al. Application of rotating arc system to horizontal narrow gap welding [J]. Sci. Technol. Weld. Joinning, 2009, 14: 172
[14] Guo N, Lin S B, Gao C, et al. Study on elimination of interlayer defects in horizontal joints made by rotating arc narrow gap welding [J]. Sci. Technol. Weld. Joinning, 2009, 14: 584
[15] Costa J F M, Filho W A S, Jorge J C F, et al. Investigation on the ASTM A516 Grade 70 narrow gap welded joints obtained by the GMAW process with rotating electrode [J]. Int. J. Adv. Manuf. Technol., 2024, 134: 3452
[16] Wang J Y, Zhu J, Zhang C, et al. Effect of arc swing parameters on narrow gap vertical GMA weld formation [J]. ISIJ Int., 2016, 56: 844
[17] Cui H C, Jiang Z D, Tang X H, et al. Research on narrow-gap GMAW with swing arc system in horizontal position [J]. Int. J. Adv. Manuf. Technol., 2014, 74: 297
[18] Bao Y, Xue R L, Zhou J P, et al. The influence of oscillation parameters on the formation of overhead welding seams in the narrow-gap GMAW process [J]. Appl. Sci., 2023, 13: 5519
[19] Xu W H, Lin S B, Fan C L, et al. Prediction and optimization of weld bead geometry in oscillating arc narrow gap all-position GMA welding [J]. Int. J. Adv. Manuf. Technol., 2015, 79: 183
[20] Yang Z D, Chen Y T, Zhang Z W, et al. Research on the sidewall penetration mechanisms of cable-type welding wire narrow gap GMAW process [J]. Int. J. Adv. Manuf. Technol., 2022, 120: 2443
[21] Fang C F, Chen Z W, Xu G X, et al. Study on the process of CTWW CO2 gas shielded welding [J]. Acta Metall. Sin., 2012, 48: 1299
[21] 方臣富, 陈志伟, 胥国祥 等. 缆式焊丝CO2气体保护焊工艺研究 [J]. 金属学报, 2012, 48: 1299
[22] Zhu Z Y, Wang J Y, Liu S B, et al. Thick-wire swing arc narrow gap GMA welding assisted by pre-embedding cold wires [J]. Int. J. Adv. Manuf. Technol., 2024, 131: 301
[23] Cai X Y, Lin S B, Fan C L, et al. Molten pool behaviour and weld forming mechanism of tandem narrow gap vertical GMAW [J]. Sci. Technol. Weld. Joinning, 2016, 21: 124
[24] Fang D S, Liu L M. Analysis of process parameter effects during narrow-gap triple-wire gas indirect arc welding [J]. Int. J. Adv. Manuf. Technol., 2017, 88: 2717
[25] Marques L F N, Santos E B F, Gerlich A P, et al. Fatigue life assessment of weld joints manufactured by GMAW and CW-GMAW processes [J]. Sci. Technol. Weld. Joinning, 2017, 22: 87
[26] Wang C, Wang J, Bento J, et al. A novel cold wire gas metal arc (CW-GMA) process for high productivity additive manufacturing [J]. Addit. Manuf., 2023, 73: 103681
[27] Ribeiro R A, Assunção P D C, Dos Santos E B F, et al. Application of cold wire gas metal arc welding for narrow gap welding (NGW) of high strength low alloy steel [J]. Materials, 2019, 12: 335
[28] Suwannatee N, Yamamoto M. Single-pass process of square butt joints without edge preparation using hot-wire gas metal arc welding [J]. Metals, 2023, 13: 1014
[29] Jiang Y Q, Li H, Zhu J, et al. A swing arc narrow gap gas metal arc welding process assisted by direct-current hot wire [J]. Sci. Technol. Weld. Joinning, 2025, 30: 231
[30] Wang J Y, Jiang Y Q, Zhu J, et al. Development of swing arc narrow gap GMAW process assisted by swaying wire [J]. J. Mater. Process. Technol., 2023, 318: 118004
[31] Li Y, Jiang P, Li Y T, et al. Microstructure evolution and mechanical properties in the depth direction of ultra-high power laser-arc hybrid weld joint of 316L stainless steel [J]. Opt. Laser Technol., 2023, 160: 109093
[32] Zhang M, Jia F, Cheng K K, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel [J]. Acta Metall. Sin., 2019, 55: 1379
[32] 张 敏, 贾 芳, 程康康 等. 调质处理对G520钢焊接接头组织及性能的影响 [J]. 金属学报, 2019, 55: 1379
[33] Kang Y, Park G, Jeong S, et al. Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 177
[34] Xie X, Wan Y B, Zhong M, et al. Optimizing microstructures and mechanical properties of electro-gas welded metals for EH36 shipbuilding steel treated by CaF2-TiO2 fluxes [J]. Acta Metall. Sin., 2025, 61: 998
[34] 谢 旭, 万一博, 钟 明 等. CaF2-TiO2焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控 [J]. 金属学报, 2025, 61: 998
[35] Jiao J J, Cao R, Li Y M, et al. Effect of post-welding heat treatment on impact toughness of Q690 high strength steel welded metal [J]. Mater. Rep., 2025, 39: 24010076
[35] 焦继军, 曹 睿, 李义民 等. 焊后热处理对Q690高强钢焊缝金属冲击韧性的影响 [J]. 材料导报, 2025, 39: 24010076
[1] 陆善平, 孙健. 高强钢焊缝金属组织设计与强韧化机理研究进展[J]. 金属学报, 2026, 62(1): 1-16.
[2] 阴嘉琳, 石磊, 武传松. 超声振动对镁/铝异质合金搅拌摩擦搭接焊接头界面组织演变的影响[J]. 金属学报, 2026, 62(1): 133-147.
[3] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[6] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[7] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[8] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[9] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[10] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[11] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[12] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[13] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[14] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[15] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.