|
|
|
| 基于深冷轧制备的高强韧高氮奥氏体不锈钢的力学行为 |
赵今涛1, 孙利芳1, 何竹风1( ), 刘玉杰1, 马小柏2, 申勇峰3, 贾楠1( ) |
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2 中国原子能科学研究院 核物理研究所 北京 102413 3 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
| Mechanical Behavior of Cryogenic Rolling Processed High Nitrogen Austenitic Stainless Steel with High Strength and Good Toughness |
ZHAO Jintao1, SUN Lifang1, HE Zhufeng1( ), LIU Yujie1, MA Xiaobai2, SHEN Yongfeng3, JIA Nan1( ) |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 Institute of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China 3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
赵今涛, 孙利芳, 何竹风, 刘玉杰, 马小柏, 申勇峰, 贾楠. 基于深冷轧制备的高强韧高氮奥氏体不锈钢的力学行为[J]. 金属学报, 2025, 61(12): 1884-1894.
Jintao ZHAO,
Lifang SUN,
Zhufeng HE,
Yujie LIU,
Xiaobai MA,
Yongfeng SHEN,
Nan JIA.
Mechanical Behavior of Cryogenic Rolling Processed High Nitrogen Austenitic Stainless Steel with High Strength and Good Toughness[J]. Acta Metall Sin, 2025, 61(12): 1884-1894.
| [1] |
Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment [J]. J. Alloys Compd., 2022, 928: 167135
|
| [2] |
Duan Z Y, Kim M K, Fang Y J, et al. Investigation of laser-powder bed fusion driven controllable heterogeneous microstructure and its mechanical properties of martensitic stainless steel [J]. Mater. Sci. Eng., 2024, A891: 145917
|
| [3] |
Liu Z Z, Wei Z Y, Zou X H, et al. Microstructural evolution and mechanical behavior of Custom 465 precipitation hardening stainless steel fabricated via laser powder bed fusion [J]. Mater. Sci. Eng., 2024, A892: 146069
|
| [4] |
Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
|
| [5] |
Wang Y Q, Hu C J, Tian K, et al. Excellent ductility of an austenitic stainless steel at a high strength level achieved by a simple process [J]. Mater. Des., 2024, 239: 112796
|
| [6] |
Li S, Zhang C S, Lu J P, et al. A review of progress on high nitrogen austenitic stainless-steel research [J]. Mater. Express, 2021, 11: 1901
|
| [7] |
Liu L, Wang G C, Xiao Y Y, et al. Molecular dynamics simulation of Cr-N clusters formation in high nitrogen austenitic stainless steel [J]. Scr. Mater., 2023, 227: 115309
|
| [8] |
Mao L Y, Luo Z A, Huang C, et al. Effects of grain boundary character distribution on hydrogen-induced cracks initiation and propagation at different strain rates in a nickel-saving and high-nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2023, A862: 144509
|
| [9] |
Wang Y, Wang Z H, Wang W, et al. Effect of nitrogen content on mechanical properties of 316L (N) austenitic stainless steel [J]. Mater. Sci. Eng., 2023, A884: 145549
|
| [10] |
Liang X W, Zhang Y M, Zhang Q, et al. Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing [J]. Mater. Today Commun., 2023, 35: 105799
|
| [11] |
He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
|
| [12] |
He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
|
| [13] |
Zheng C, Liu J B, Jiang L Z, et al. Effect of tensile deformation on microstructure and corrosion resistance of high nitrogen austenitic stainless steels [J]. Acta. Metall. Sin., 2022, 58: 193
|
| [13] |
郑 椿, 刘嘉斌, 江来珠 等. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2022, 58: 193
|
| [14] |
Odnobokova M V, Belyakov A N, Dolzhenko P D, et al. On the strengthening mechanisms of high nitrogen austenitic stainless steels [J]. Mater. Lett., 2023, 331: 133502
|
| [15] |
Wang Y, Wang Y F, Wang Z H. Enhancing yield strength of high nitrogen austenitic stainless steel [J]. J. Constr. Steel. Res., 2021, 187: 106927
|
| [16] |
He Z F, Guo Y X, Sun L F, et al. Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys [J]. Acta Mater., 2023, 243: 118495
|
| [17] |
Zhang J W, Wang J X, Zou X W, et al. Texture evolution and temperature-dependent deformation modes in ambient- and cryogenic-rolled nanolayered Zr-2.5Nb [J]. Acta Mater., 2022, 234: 118023
|
| [18] |
Zhao S S, Liang Q L, Su Y T, et al. Cryogenic rolling induces quasi-linear superelasticity with high strength over a wide temperature range in TiNi shape memory alloys [J]. Scr. Mater., 2024, 243: 115996
|
| [19] |
Lin X H, Han W Z. Achieving strength-ductility synergy in zirconium via ultra-dense twin-twin networks [J]. Acta Mater., 2024, 269: 119825
|
| [20] |
Tan D, Fu B, Guan W, et al. Hierarchical multiple precursors induced heterogeneous structures in super austenitic stainless steels by cryogenic rolling and annealing [J]. Materials, 2023, 16: 6298
|
| [21] |
Xin Z, Jiang Y B, Wu Z X, et al. Effect of cryogenic rolling and multistage thermo-mechanical treatment on the microstructure and properties of the Cu-0.4Cr-0.39Zn-0.1Mg-0.07Zr alloy [J]. Mater. Charact., 2024, 207: 113557
|
| [22] |
Liao W N, Qiang H, Song W F, et al. Effect and mechanism of room temperature rolling, cryogenic rolling and heat treatment on mechanical properties and electrical conductivity of Cu-Ni-Si alloy with continuous directional solidification [J]. J. Alloys Compd., 2023, 949: 169748
|
| [23] |
Dai W, Jiang Y, Yao J G, et al. Simultaneously improving the strength and ductility of an Ag-free 2195 Al-Li alloy by T8 treatment with cryogenic pre-rolling [J]. J. Alloys Compd., 2024, 976: 173214
|
| [24] |
Wang X C, Zhao Y X, Liu Y, et al. Influence of substructures on precipitation behavior and mechanical properties of cryogenic rolled Al-Mg-Si alloys during aging treatment [J]. J. Mater. Res. Technol., 2023, 25: 946
|
| [25] |
Yang D K, Cizek P, Fabijanic D, et al. Work hardening in ultrafine-grained titanium: Multilayering and grading [J]. Acta Mater., 2013, 61: 2840
|
| [26] |
Li L L, Liu J X, Ding C, et al. Enhancing yield strength and ductility of Fe-Mn-C-xAl (x = 0, 3) high manganese steel by cryogenic rolling [J]. Mater. Lett., 2024, 354: 135382
|
| [27] |
Singh R, Sachan D, Verma R, et al. Mechanical behavior of 304 austenitic stainless steel processed by cryogenic rolling [J]. Mater. Today: Proc., 2018, 5: 16880
|
| [28] |
Xiong Y, He T T, Wang J B, et al. Cryorolling effect on microstructure and mechanical properties of Fe-25Cr-20Ni austenitic stainless steel [J]. Mater. Des., 2015, 88: 398
|
| [29] |
Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
|
| [30] |
Fullman R L. Measurement of particle sizes in opaque bodies [J]. JOM, 1953, 5: 447
|
| [31] |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
|
| [32] |
Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
|
| [33] |
Wilkens M. The determination of density and distributions of dislocations in deformed single crystals from broadened X-Ray diffraction profiles [J]. Phys. Status Solidi, 1970, 2A: 359
|
| [34] |
Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Crystallogr., 1999, 32: 992
|
| [35] |
Niu G, Wu H B. Microstructural evolution and mechanical behavior of phase reversion-induced bimodal austenitic steels [J]. Mater. Sci. Eng., 2020, A772: 138669
|
| [36] |
Niu G, Wu H B, Zhang D, et al. Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility [J]. Mater. Sci. Eng., 2018, A725: 187
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|