Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1884-1894    DOI: 10.11900/0412.1961.2024.00093
  研究论文 本期目录 | 过刊浏览 |
基于深冷轧制备的高强韧高氮奥氏体不锈钢的力学行为
赵今涛1, 孙利芳1, 何竹风1(), 刘玉杰1, 马小柏2, 申勇峰3, 贾楠1()
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2 中国原子能科学研究院 核物理研究所 北京 102413
3 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Mechanical Behavior of Cryogenic Rolling Processed High Nitrogen Austenitic Stainless Steel with High Strength and Good Toughness
ZHAO Jintao1, SUN Lifang1, HE Zhufeng1(), LIU Yujie1, MA Xiaobai2, SHEN Yongfeng3, JIA Nan1()
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Institute of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

赵今涛, 孙利芳, 何竹风, 刘玉杰, 马小柏, 申勇峰, 贾楠. 基于深冷轧制备的高强韧高氮奥氏体不锈钢的力学行为[J]. 金属学报, 2025, 61(12): 1884-1894.
Jintao ZHAO, Lifang SUN, Zhufeng HE, Yujie LIU, Xiaobai MA, Yongfeng SHEN, Nan JIA. Mechanical Behavior of Cryogenic Rolling Processed High Nitrogen Austenitic Stainless Steel with High Strength and Good Toughness[J]. Acta Metall Sin, 2025, 61(12): 1884-1894.

全文: PDF(3785 KB)   HTML
摘要: 

高氮奥氏体不锈钢凭借良好的综合性能和绿色、价廉等特点成为钢铁行业的重要材料。然而,其室温屈服强度较低,难以满足大载荷应用需求,亟待开发具有高强度和良好塑性的高氮奥氏体不锈钢。本工作以名义成分为Fe-18.87Cr-10.09Mn-1.12Ni-0.53N-0.18Si-0.04C (质量分数,%)的高氮奥氏体不锈钢作为研究对象,在液氮温度下对其施加压下量为10%的深冷轧制工艺,获得了屈服强度、抗拉强度和均匀延伸率分别为947 MPa、1051 MPa和36%的优异综合力学性能。此结果与由冷轧和退火相结合的传统热机械加工工艺制备的钢铁材料的最优强塑性相当。经深冷轧制得到的材料屈服强度显著提升,是固溶态钢的1.86倍。这主要得益于深冷轧制过程中引入的密集位错亚结构以及由ε-马氏体板条、形变孪晶和具有局部化学有序的板条结构组成的密集片层组织,诱发多种强化机制的协同作用。此外,该材料还保持了良好的均匀延伸率和加工硬化能力,这归因于在塑性变形过程中发生了位错滑移和显著的孪晶诱导塑性效应。本工作证实深冷轧制技术在高氮奥氏体不锈钢的制备和生产过程中具有节约成本、简化工艺和提高效率等显著优势。

关键词 高氮奥氏体不锈钢深冷轧制力学性能微观结构演化强韧化机制    
Abstract

High nitrogen austenitic stainless steels have emerged as crucial materials in the steel industry due to their excellent comprehensive properties and their cost-effective and ecofriendly characteristics. However, the yield strength of those alloys at room temperature is limited and fails to meet the requirements for high stress loads. Therefore, high nitrogen austenitic stainless steels having high strength and good ductility are urgently needed. This study focuses on a high nitrogen austenitic stainless steel with a nominal composition of Fe-18.87Cr-10.09Mn-1.12Ni-0.53N-0.18Si-0.04C (mass fraction, %). The steel plate was subjected to cryogenic rolling at the liquid nitrogen temperature with a thickness reduction of 10%, achieving exceptional comprehensive mechanical properties, including a yield strength of 947 MPa, a tensile strength of 1051 MPa, and a uniform elongation of 36%. These results are comparable to the optimal strength and ductility obtained by traditional thermomechanical processes including cold rolling and its subsequent annealing. The substantial enhancement in yield strength, which is 1.86 times than that of the homogenized state, is primarily attributed to the dense dislocation substructures and complex lamellar structures composed of ε-martensite laths, the deformation twins, and local chemical order lath structures introduced during the cryogenic rolling process. The structures induce a synergistic effect of multiple strengthening mechanisms. Moreover, the material maintains good uniform elongation and work hardening ability, which can be attributed to dislocation slip and the significant twinning-induced plasticity effect during plastic deformation. The cryogenic rolling technique demonstrated offers remarkable advantages in cost-savings, process simplification, and efficiency improvement in the preparation and production of the high nitrogen austenitic stainless steel.

Key wordshigh nitrogen austenitic stainless steel    cryogenic rolling    mechanical property    microstructure evolution    strengthening and toughening mechanism
收稿日期: 2024-03-25     
ZTFLH:  TG142.71  
基金资助:国家自然科学基金项目(52301135);国家自然科学基金项目(52371097);国家自然科学基金项目(51922026)
通讯作者: 何竹风,hezf@smm.neu.edu.cn,主要从事面心立方多主元合金的微观力学行为与强韧化研究; 贾楠,jian@atm.neu.edu.cn,主要从事金属材料微观力学行为研究
Corresponding author: HE Zhufeng, Tel: 13234016811, E-mail: hezf@smm.neu.edu.cn; JIA Nan, professor, Tel: 13591492980, E-mail: jian@atm.neu.edu.cn
作者简介: 赵今涛,男,1999年生,硕士
图1  高氮奥氏体不锈钢热轧板的加工路线示意图
图2  A750、A850、A950、HOMO和CRR10%材料的工程应力-应变曲线、真应力-应变曲线及加工硬化率曲线
SteelYield strength / MPaUltimate tensile strength / MPaUniform elongation / %
A7501284 ± 51325 ± 58 ± 3
A850875 ± 31130 ± 335 ± 2
A950840 ± 21100 ± 237 ± 2
HOMO509 ± 3865 ± 360 ± 3
CRR10%947 ± 41051 ± 436 ± 2
表1  A750、A850、A950、HOMO和CRR10%材料的力学性能
图3  HOMO、A850和CRR10%材料微观组织的SEM背散射电子(BSE)像
图4  拉伸变形前CRR10%材料的TEM像及选区电子衍射(SAED)花样
图5  拉伸变形前CRR10%材料内部局部化学有序(LCO)板条的TEM像及SAED花样
图6  HOMO、A850和CRR10%材料拉伸变形前后的XRD谱
图7  HOMO、A850和CRR10%材料断口形貌的SEM像
图8  拉伸变形后CRR10%材料断口附近区域的TEM像及SAED花样
图9  HOMO、A850和CRR10%材料的中子衍射谱及对应的修正Williamson-Hall (MWH)曲线
图10  HOMO、A850和CRR10%材料屈服强度贡献来源
[1] Liu Z B, Yang Z, Wang X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment [J]. J. Alloys Compd., 2022, 928: 167135
[2] Duan Z Y, Kim M K, Fang Y J, et al. Investigation of laser-powder bed fusion driven controllable heterogeneous microstructure and its mechanical properties of martensitic stainless steel [J]. Mater. Sci. Eng., 2024, A891: 145917
[3] Liu Z Z, Wei Z Y, Zou X H, et al. Microstructural evolution and mechanical behavior of Custom 465 precipitation hardening stainless steel fabricated via laser powder bed fusion [J]. Mater. Sci. Eng., 2024, A892: 146069
[4] Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
[5] Wang Y Q, Hu C J, Tian K, et al. Excellent ductility of an austenitic stainless steel at a high strength level achieved by a simple process [J]. Mater. Des., 2024, 239: 112796
[6] Li S, Zhang C S, Lu J P, et al. A review of progress on high nitrogen austenitic stainless-steel research [J]. Mater. Express, 2021, 11: 1901
[7] Liu L, Wang G C, Xiao Y Y, et al. Molecular dynamics simulation of Cr-N clusters formation in high nitrogen austenitic stainless steel [J]. Scr. Mater., 2023, 227: 115309
[8] Mao L Y, Luo Z A, Huang C, et al. Effects of grain boundary character distribution on hydrogen-induced cracks initiation and propagation at different strain rates in a nickel-saving and high-nitrogen austenitic stainless steel [J]. Mater. Sci. Eng., 2023, A862: 144509
[9] Wang Y, Wang Z H, Wang W, et al. Effect of nitrogen content on mechanical properties of 316L (N) austenitic stainless steel [J]. Mater. Sci. Eng., 2023, A884: 145549
[10] Liang X W, Zhang Y M, Zhang Q, et al. Effects of nitrogen on the microstructure and mechanical properties of an austenitic stainless steel with incomplete recrystallization annealing [J]. Mater. Today Commun., 2023, 35: 105799
[11] He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
[12] He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
[13] Zheng C, Liu J B, Jiang L Z, et al. Effect of tensile deformation on microstructure and corrosion resistance of high nitrogen austenitic stainless steels [J]. Acta. Metall. Sin., 2022, 58: 193
[13] 郑 椿, 刘嘉斌, 江来珠 等. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2022, 58: 193
[14] Odnobokova M V, Belyakov A N, Dolzhenko P D, et al. On the strengthening mechanisms of high nitrogen austenitic stainless steels [J]. Mater. Lett., 2023, 331: 133502
[15] Wang Y, Wang Y F, Wang Z H. Enhancing yield strength of high nitrogen austenitic stainless steel [J]. J. Constr. Steel. Res., 2021, 187: 106927
[16] He Z F, Guo Y X, Sun L F, et al. Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys [J]. Acta Mater., 2023, 243: 118495
[17] Zhang J W, Wang J X, Zou X W, et al. Texture evolution and temperature-dependent deformation modes in ambient- and cryogenic-rolled nanolayered Zr-2.5Nb [J]. Acta Mater., 2022, 234: 118023
[18] Zhao S S, Liang Q L, Su Y T, et al. Cryogenic rolling induces quasi-linear superelasticity with high strength over a wide temperature range in TiNi shape memory alloys [J]. Scr. Mater., 2024, 243: 115996
[19] Lin X H, Han W Z. Achieving strength-ductility synergy in zirconium via ultra-dense twin-twin networks [J]. Acta Mater., 2024, 269: 119825
[20] Tan D, Fu B, Guan W, et al. Hierarchical multiple precursors induced heterogeneous structures in super austenitic stainless steels by cryogenic rolling and annealing [J]. Materials, 2023, 16: 6298
[21] Xin Z, Jiang Y B, Wu Z X, et al. Effect of cryogenic rolling and multistage thermo-mechanical treatment on the microstructure and properties of the Cu-0.4Cr-0.39Zn-0.1Mg-0.07Zr alloy [J]. Mater. Charact., 2024, 207: 113557
[22] Liao W N, Qiang H, Song W F, et al. Effect and mechanism of room temperature rolling, cryogenic rolling and heat treatment on mechanical properties and electrical conductivity of Cu-Ni-Si alloy with continuous directional solidification [J]. J. Alloys Compd., 2023, 949: 169748
[23] Dai W, Jiang Y, Yao J G, et al. Simultaneously improving the strength and ductility of an Ag-free 2195 Al-Li alloy by T8 treatment with cryogenic pre-rolling [J]. J. Alloys Compd., 2024, 976: 173214
[24] Wang X C, Zhao Y X, Liu Y, et al. Influence of substructures on precipitation behavior and mechanical properties of cryogenic rolled Al-Mg-Si alloys during aging treatment [J]. J. Mater. Res. Technol., 2023, 25: 946
[25] Yang D K, Cizek P, Fabijanic D, et al. Work hardening in ultrafine-grained titanium: Multilayering and grading [J]. Acta Mater., 2013, 61: 2840
[26] Li L L, Liu J X, Ding C, et al. Enhancing yield strength and ductility of Fe-Mn-C-xAl (x = 0, 3) high manganese steel by cryogenic rolling [J]. Mater. Lett., 2024, 354: 135382
[27] Singh R, Sachan D, Verma R, et al. Mechanical behavior of 304 austenitic stainless steel processed by cryogenic rolling [J]. Mater. Today: Proc., 2018, 5: 16880
[28] Xiong Y, He T T, Wang J B, et al. Cryorolling effect on microstructure and mechanical properties of Fe-25Cr-20Ni austenitic stainless steel [J]. Mater. Des., 2015, 88: 398
[29] Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
[30] Fullman R L. Measurement of particle sizes in opaque bodies [J]. JOM, 1953, 5: 447
[31] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[32] Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
[33] Wilkens M. The determination of density and distributions of dislocations in deformed single crystals from broadened X-Ray diffraction profiles [J]. Phys. Status Solidi, 1970, 2A: 359
[34] Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Crystallogr., 1999, 32: 992
[35] Niu G, Wu H B. Microstructural evolution and mechanical behavior of phase reversion-induced bimodal austenitic steels [J]. Mater. Sci. Eng., 2020, A772: 138669
[36] Niu G, Wu H B, Zhang D, et al. Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility [J]. Mater. Sci. Eng., 2018, A725: 187
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[6] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[7] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[8] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[9] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[10] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[11] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[12] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[13] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[14] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[15] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.