Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 953-960    DOI: 10.11900/0412.1961.2025.00153
  ★名家经典★ 本期目录 | 过刊浏览 |
负混合焓合金化推动高强韧合金发展
韩晓东1,2(), 安子冰1, 毛圣成2, 龙海波2, 杨鲁岩2, 张泽3
1 南方科技大学 材料科学与工程系 深圳 518055
2 北京工业大学 材料科学与工程学院 固体微结构与性能北京市重点实验室 北京 100124
3 浙江大学 材料科学与工程学院 杭州 310027
Negative Mixing Enthalpy Alloying to Promote the Development of Alloys with High Strength and Ductility
HAN Xiaodong1,2(), AN Zibing1, MAO Shengcheng2, LONG Haibo2, YANG Luyan2, ZHANG Ze3
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2 Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
3 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

韩晓东, 安子冰, 毛圣成, 龙海波, 杨鲁岩, 张泽. 负混合焓合金化推动高强韧合金发展[J]. 金属学报, 2025, 61(7): 953-960.
Xiaodong HAN, Zibing AN, Shengcheng MAO, Haibo LONG, Luyan YANG, Ze ZHANG. Negative Mixing Enthalpy Alloying to Promote the Development of Alloys with High Strength and Ductility[J]. Acta Metall Sin, 2025, 61(7): 953-960.

全文: PDF(1499 KB)   HTML
摘要: 

金属材料强度与塑性的协同提升始终是材料科学领域的核心挑战。由于材料的强度和塑性受位错可动性制约,2者通常难以协同兼顾,多主元合金(高熵合金)的出现为走出这一困境提供了新思路。相对于常规的固溶强化合金,多主元合金具有更大的晶格畸变,位错运动需要克服更高和更频繁的能量起伏,耗费更大的能量,合金流变应力随应变增加而增加,使得一些合金获得了较大加工硬化能力和强塑性协同提升。然而,该领域至少存在2个关键科学问题需要深入研究:(1) 多主元合金是完全理想的随机混合结构吗?是否需要规范其局域乃至多级微观结构来实现优异性能?(2) 如何规范和调控多主元合金微观结构?本文从规范和调控多主元合金微观结构出发,提出用负混合焓(负焓)合金化方法在原子尺度加工合金微观结构的学术思想,系统阐述利用负焓合金化方法实现合金强度与塑性协同提升,并揭示强韧化新机理。负焓合金化具有金属材料微观结构调控的3重效应:键能与慢扩散效应、局部化学有序效应、界面和尺寸效应,其为高强韧金属材料的微观结构在原子尺度设计加工提供了新维度和新范式。

关键词 金属结构材料强度塑性负混合焓强韧化负混合焓合金化    
Abstract

Achieving a synergistic improvement in the strength and ductility of metallic materials has long been a central challenge in materials science. Dislocation mobility limits both properties, making it difficult to strike a balance between them. The advent of multi-principal element alloys (also known as high-entropy alloys) offers a promising solution to this issue. Compared with conventional solid solution strengthened alloys, multi-principal element alloys exhibit greater lattice distortion. Consequently, dislocation movement must overcome higher and more frequent energy fluctuations, which consumes more energy. This increase in flow stress with increasing strain allows certain alloys to achieve enhanced work hardening capacity, leading to simultaneous improvements in both strength and ductility. However, two critical scientific questions in this area warrant further investigation: (1) Are multi-principal element alloys purely ideal random mixed structures, or is standardizing their local or multi-level microstructures necessary to achieve optimal performance? (2) How can we effectively standardize and regulate the microstructures of multi-principal element alloys? This study addresses these questions by proposing the concept of using negative mixing enthalpy (negative-enthalpy) alloying to standardize and regulate the microstructure of multi-principal element alloys. This study systematically explores how negative-enthalpy alloying can synergistically enhance strength and ductility while revealing new mechanisms of strengthening and toughening. Negative-enthalpy alloying affects the microstructure of metallic materials through three main effects: bond energy and slow diffusion, local chemical ordering, and interface and size effects. This approach provides a novel framework for designing and processing the microstructures of high-strength, high-ductility metallic materials at the atomic scale.

Key wordsstructural metallic material    strength    ductility    negative mixing enthalpy    strengthening and toughening    negative mixing enthalpy alloying
收稿日期: 2025-06-03     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2021YFA1200201)
通讯作者: 韩晓东,hanxd@sustech.edu.cn,主要从事材料微观结构表征与金属材料微观结构加工技术研究
作者简介: 韩晓东,男,1968年生,教授,博士
图1  fcc结构多主元合金和bcc结构难熔多主元合金中常见元素的混合焓
图2  bcc结构难熔多主元合金及fcc结构多主元合金的力学性能[11,25,27,29~32]
图3  混合焓与显微结构特征关联关系[11,12,15,27]
1 Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
2 Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324: 349
doi: 10.1126/science.1159610 pmid: 19372422
3 Li H, Zong H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
4 Li X T, Liu R, Hou J P, et al. Trade-off model for strength-ductility relationship of metallic materials [J]. Acta Mater., 2025, 289: 120942
5 Ma E, Liu C. Achieving alloys with concurrent high strength and high ductility [J]. Acta Metall. Sin., 2025, 61: 665
doi: 10.11900/0412.1961.2024.00422
5 马 恩, 刘 畅. 如何使合金兼具高强度与高塑性 [J]. 金属学报, 2025, 61: 665
6 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
7 Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
8 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
9 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
10 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
11 An Z B, Li A, Mao S C, et al. Negative mixing enthalpy solid solutions deliver high strength and ductility [J]. Nature, 2024, 625: 697
12 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
13 Liu D, Wang Q, Wang J, et al. Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy [J]. Mater. Today Nano, 2021, 16: 100139
14 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
15 Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w pmid: 35197473
16 Fleischer R L. Substitutional solution hardening [J]. Acta Metall., 1963, 11: 203
17 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMo x high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
18 Chen Y J, Fang Y, Fu X Q, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73: 101
doi: 10.1016/j.jmst.2020.08.058
19 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
20 An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
21 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
22 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
23 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
24 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
25 Wang L, Ding J, Chen S S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys [J]. Nat. Mater., 2023, 22: 950
doi: 10.1038/s41563-023-01517-0 pmid: 37037961
26 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
27 An Z B, Yang T, Shi C J, et al. Negative enthalpy alloys and local chemical ordering: A concept and route leading to synergy of strength and ductility [J]. Natl. Sci. Rev., 2024, 11: nwae026
28 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
29 An Z B, Mao S C, Vayyala A, et al. Multiscale hierarchical heterostructure yields combined high strength and excellent ductility in a Co-Cr-Fe-Ni-Al negative enthalpy alloy [J]. Acta Mater., 2024, 281: 120366
30 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
31 Gao Q W, Kou Z D, Zhou C S, et al. Exceptional strength-ductility synergy in a casting multi-principal element alloy with a hierarchically heterogeneous structure [J]. Mater. Today, 2024, 81: 70
32 Xie Y, Lu T W, Sun B H, et al. Discontinuous precipitation enables an exceptional cryogenic strength-strain hardening synergy in a heterostructured medium entropy alloy [J]. Acta Mater., 2025, 290: 120955
33 Li C Y, Yin J F, Ding J Q, et al. Effect of Er on properties of Zr-based bulk metallic glasses [J]. Mater. Sci. Technol., 2018, 34: 1887
34 Zhao J B, Yuan X Y, Zhao Y S, et al. Mixing enthalpy alloying leads to interface and size effects towards superb creep resistance of nickel-based single crystalline superalloys [J]. Natl. Sci. Rev., DOI: 10.1093/nsr/nwaf228
35 Huang Y C, Gu S, Xu X, et al. Negative enthalpy doping stabilizes P2‐type oxides cathode for high‐performance sodium‐ion batteries [J]. Adv. Mater., 2025, 37: 2408012
36 Zhao S, Wang M L, Han X D, et al. Negative mixing enthalpy route guides strong and ductile soft magnetic high-entropy alloys with high saturation magnetization [J]. Mater. Today, 2025, DOI: 10.1016/j.mattod.2025.05.017
[1] 李大禹, 姚志浩, 赵杰, 董建新, 郭婧, 赵宇. FGH4720Li粉末高温合金在近服役条件下的组织与力学性能演变规律[J]. 金属学报, 2025, 61(6): 826-836.
[2] 马恩, 刘畅. 如何使合金兼具高强度与高塑性[J]. 金属学报, 2025, 61(5): 665-673.
[3] 罗来马, 魏国庆, 刘祯, 朱晓勇, 吴玉程. 钨材料中缺陷的形成及演化规律[J]. 金属学报, 2025, 61(4): 526-540.
[4] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[5] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[6] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[7] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[8] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[9] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[10] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[11] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[12] 苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
[13] 程坤, 陈树明, 曹烁, 刘建荣, 马英杰, 范群波, 程兴旺, 杨锐, 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 2024, 60(4): 537-547.
[14] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[15] 李龙健, 李仁庚, 张家郡, 曹兴豪, 康慧君, 王同敏. 低温轧制对高强高导Cu-1Cr-0.2Zr-0.25Nb合金性能及析出行为的影响[J]. 金属学报, 2024, 60(3): 405-416.