|
|
B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理 |
南勇1, 关旭1, 闫海乐1( ), 唐帅2, 贾楠1( ), 赵骧1, 左良1 |
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 2 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy |
NAN Yong1, GUAN Xu1, YAN Haile1( ), TANG Shuai2, JIA Nan1( ), ZHAO Xiang1, ZUO Liang1 |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
南勇, 关旭, 闫海乐, 唐帅, 贾楠, 赵骧, 左良. B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理[J]. 金属学报, 2024, 60(12): 1647-1655.
Yong NAN,
Xu GUAN,
Haile YAN,
Shuai TANG,
Nan JIA,
Xiang ZHAO,
Liang ZUO.
Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy[J]. Acta Metall Sin, 2024, 60(12): 1647-1655.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
|
4 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
5 |
Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2
pmid: 35739123
|
6 |
Zhang T, Wu Y T, Yu Y H, et al. High throughput screening driven discovery of Mn5Co10Fe30Ni55O x as electrocatalyst for water oxidation and electrospinning synthesis [J]. Appl. Surf. Sci., 2022, 588: 152959
|
7 |
Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
|
8 |
He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
|
9 |
Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
|
10 |
Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
10 |
张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
11 |
Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
|
12 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
13 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
14 |
Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
|
15 |
Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
|
16 |
Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
|
17 |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
|
18 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
|
19 |
Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
|
20 |
Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8
pmid: 32555177
|
21 |
Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
|
22 |
Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6
pmid: 34349105
|
23 |
Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
|
24 |
Tian J, Tang K, Wu Y K, et al. Effects of Al alloying on microstructure and mechanical properties of VCoNi medium entropy alloy [J]. Mater. Sci. Eng., 2021, A811: 141054
|
25 |
Tu J, Yang W H, Xu K, et al. Effect of Ta content on stacking fault energy and microstructure characteristics of (VCoNi)100 - X Ta X (X = 0, 0.05, 0.5 and 1) medium entropy alloy [J]. Mater. Lett., 2021, 305: 130770
|
26 |
Han Z H, Guo Y N, Yang J, et al. Effect of Al addition on the corrosion behavior of the VCoNi medium-entropy alloys [J]. J. Alloys Compd., 2022, 920: 165954
|
27 |
Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
|
28 |
Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
|
29 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
|
30 |
Li G R, Gao L P, Wang H M, et al. Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy [J]. J. Alloys Compd., 2021, 866: 157848
|
31 |
Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 105636
|
32 |
Yang Z, Cong D Y, Yuan Y, et al. Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials [J]. Mater. Res. Lett., 2019, 7: 137
doi: 10.1080/21663831.2019.1566182
|
33 |
Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
|
34 |
Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94
|
35 |
Pujar M G, Laha K, Dayal R K, et al. Studies on the effect of B and B + Ce additions on the electrochemical corrosion behaviour of 9Cr-1Mo using electrochemical noise (EN) technique [J]. Int. J. Electrochem. Sci., 2008, 3: 891
|
36 |
Wang L. Mechanical Properties of Materials [M]. 3rd Ed., Shenyang: Northeastern University Press, 2014: 80
|
36 |
王 磊. 材料的力学性能 [M]. 第 3版, 沈阳: 东北大学出版社, 2014: 80
|
37 |
Jia N, Roters F, Eisenlohr P, et al. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass [J]. Acta Mater., 2012, 60: 1099
|
38 |
Ullman N, Luko S. Statistical standards and ASTM [J]. Qual. Eng., 2010, 22: 358
|
39 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
40 |
Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
|
41 |
Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
|
42 |
Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
42 |
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
43 |
Tang Z Y, Wu Z Q, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation [J]. Acta Metall. Sin., 2011, 47: 1426
|
43 |
唐正友, 吴志强, 昝 娜 等. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为 [J]. 金属学报, 2011, 47: 1426
doi: 10.3724/SP.J.1037.2011.00311
|
44 |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
|
45 |
Li J G, Ding Y J, Peng X D, et al. Effects of water quenching process on the microstructure and mechanical properties of TWIP steel [J]. Acta Metall. Sin., 2010, 46: 221
|
45 |
李激光, 丁亚杰, 彭兴东 等. 水淬工艺对TWIP钢显微组织和力学性能的影响 [J]. 金属学报, 2010, 46: 221
doi: 10.3724/SP.J.1037.2009.00180
|
46 |
Sanyal S, Waghmare U V, Subramanian P R, et al. Effect of dopants on grain boundary decohesion of Ni: A first-principles study [J]. Appl. Phys. Lett., 2008, 93: 223113
|
47 |
Stinville J C, Gallup K, Pollock T M. Transverse creep of nickel-base superalloy bicrystals [J]. Metall. Mater. Trans., 2015, 46A: 2516
|
48 |
Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
|
49 |
Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
|
50 |
Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265: 376
pmid: 17838041
|
51 |
Messmer R P, Briant C L. The role of chemical bonding in grain boundary embrittlement [J]. Acta Metall., 1982, 30: 457
|
52 |
Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
|
53 |
Kraft R H, Molinari J F. A statistical investigation of the effects of grain boundary properties on transgranular fracture [J]. Acta Mater., 2008, 56: 4739
|
54 |
Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|