Please wait a minute...
金属学报  2024, Vol. 60 Issue (12): 1647-1655    DOI: 10.11900/0412.1961.2022.00581
  研究论文 本期目录 | 过刊浏览 |
B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理
南勇1, 关旭1, 闫海乐1(), 唐帅2, 贾楠1(), 赵骧1, 左良1
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy
NAN Yong1, GUAN Xu1, YAN Haile1(), TANG Shuai2, JIA Nan1(), ZHAO Xiang1, ZUO Liang1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

南勇, 关旭, 闫海乐, 唐帅, 贾楠, 赵骧, 左良. B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理[J]. 金属学报, 2024, 60(12): 1647-1655.
Yong NAN, Xu GUAN, Haile YAN, Shuai TANG, Nan JIA, Xiang ZHAO, Liang ZUO. Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy[J]. Acta Metall Sin, 2024, 60(12): 1647-1655.

全文: PDF(3551 KB)   HTML
摘要: 

B微合金化可显著改善金属材料的力学性能,但是其对CoNiV合金的影响仍不清楚。本工作系统研究了(CoNiV)100 - x B x (x = 0、0.1和0.2,原子分数,%)合金静态拉伸力学性能以及形变前后晶体结构、微观组织及微观硬度特征,揭示了微量B元素掺杂对CoNiV合金微观组织和力学性能的影响规律及作用机制。结果表明,微量B元素掺杂可以同步提升CoNiV合金的强度和塑性。0.2%B掺杂可使CoNiV合金屈服强度、极限抗拉强度和断裂延伸率分别提升12%、10%和30%。微量B元素掺杂对CoNiV合金的晶体结构、晶粒尺寸与分布、晶体学取向及塑性变形机制影响较小。(CoNiV)99.8B0.2合金室温下晶体结构仍旧为fcc结构,静态拉伸过程塑性变形机制仍为位错滑移,无应力诱发马氏体相变和形变孪生现象。纳米压痕测试结果表明,微量B元素掺杂可显著提升CoNiV合金晶界/孪晶界硬度,证实了B元素在CoNiV合金中的晶界强化作用。晶界/孪晶界强度的提升,一方面可增加位错穿过阻力,另一方面能够增加其阻碍裂纹扩展的能力,这是B掺杂使CoNiV合金强度和塑性同时提升的根源。另外,固溶到基体中的B元素也对位错运动起到一定钉扎作用,有利于合金强度的提升。

关键词 中熵合金CoNiVB掺杂晶界强化力学性能强韧化    
Abstract

CoNiV is a novel medium-entropy alloy with excellent mechanical properties. Currently, alloying CoNiV with Al has been extensively employed to improve its mechanical strength. Unfortunately, the microstructure of CoNiV changes from a single phase to a dual phase due to the addition of Al, which considerably reduces its corrosion resistance. Therefore, developing new strategies to improve its mechanical properties is imperative. In this study, the microstructure and static tensile mechanical properties of (CoNiV)100 - x B x alloys (x = 0, 0.1, and 0.2, atomic fraction, %) are systematically investigated. The results revealed that the strength and ductility of CoNiV can be significantly improved by doping a small amount of B. With the introduction of 0.2%B, the yield strength, ultimate tensile strength, and elongation of CoNiV are improved, increasing by 12%, 10%, and 30%, respectively. The crystal structure, grain size, crystallographic orientation, and plastic deformation mechanism of CoNiV are not affected due to microalloying with B. At room temperature, (CoNiV)99.8B0.2 exhibits fcc structure. The plastic deformation mechanism during static tensile deformation is manifested as dislocation slip, while martensitic transformation and twin effects induced by stress are not observed. The results of the nanohardness tests indicated that doping with trace amounts of B could remarkably enhance the grain/twin boundary hardness, confirming the grain/twin boundary strengthening effect of B on CoNiV. The strengthening of grain/twin boundaries leads to increased resistance of dislocations and provides the ability to hinder crack expansion, resulting in the simultaneous enhancement of the strength and ductility of (CoNiV)99.8B0.2. Moreover, the B element dissolved into the matrix would serve as a pinning site for dislocation, thus contributing to the increased strength of CoNiV.

Key wordsmedium-entropy alloy    CoNiV    B doping    grain boundary strengthening    mechanical property    toughening
收稿日期: 2022-11-10     
ZTFLH:  TG156.2  
基金资助:国家重点研发计划项目(2021YFA1200203);中央高校基本科研业务费项目(N2202015)
通讯作者: 闫海乐,yanhaile@mail.neu.edu.cn,主要从事先进金属结构与功能材料理论与实验研究;
贾 楠,jian@atm.neu.edu.cn,主要从事先进金属结构材料研究
Corresponding author: YAN Haile, associate professor, Tel: (024)83681723, E-mail: yanhaile@mail.neu.edu.cn
JIA Nan, professor, Tel: (024)83681723, E-mail: jian@atm.neu.edu.cn
作者简介: 南 勇,男,1996年生,硕士
图1  CoNiV、(CoNiV)99.9B0.1和(CoNiV)99.8B0.2合金的室温静态拉伸力学性能
AlloyYield strength / MPaUltimate tensile strength / MPaFracture elongation / %
CoNiV968.71291.733.6
(CoNiV)99.9B0.11030.11331.634.7
(CoNiV)99.8B0.21087.41419.344.1
表1  CoNiV、(CoNiV)99.9B0.1和(CoNiV)99.8B0.2合金的屈服强度、抗拉强度和断裂延伸率
图2  CoNiV、(CoNiV)99.9B0.1和(CoNiV)99.8B0.2合金的XRD谱、相分布图与晶体学取向分布图
图3  CoNiV、(CoNiV)99.9B0.1和(CoNiV)99.8B0.2合金微观组织定量特征
图4  CoNiV和(CoNiV)99.8B0.2合金拉伸后样品的晶体结构与微观组织表征
图5  CoNiV和(CoNiV)99.8B0.2合金晶粒内部、晶界位置和孪晶界附近硬度
AlloyHGB / HGIHTB / HGI
CoNiV1.191.21
(CoNiV)99.8B0.21.281.46
表2  CoNiV和(CoNiV)99.8B0.2合金的硬度比值
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
4 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
5 Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2 pmid: 35739123
6 Zhang T, Wu Y T, Yu Y H, et al. High throughput screening driven discovery of Mn5Co10Fe30Ni55O x as electrocatalyst for water oxidation and electrospinning synthesis [J]. Appl. Surf. Sci., 2022, 588: 152959
7 Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
8 He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
9 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
10 Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
10 张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
11 Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
12 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
13 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
14 Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
15 Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
16 Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
17 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
18 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
19 Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
20 Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8 pmid: 32555177
21 Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
22 Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6 pmid: 34349105
23 Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
24 Tian J, Tang K, Wu Y K, et al. Effects of Al alloying on microstructure and mechanical properties of VCoNi medium entropy alloy [J]. Mater. Sci. Eng., 2021, A811: 141054
25 Tu J, Yang W H, Xu K, et al. Effect of Ta content on stacking fault energy and microstructure characteristics of (VCoNi)100 - X Ta X (X = 0, 0.05, 0.5 and 1) medium entropy alloy [J]. Mater. Lett., 2021, 305: 130770
26 Han Z H, Guo Y N, Yang J, et al. Effect of Al addition on the corrosion behavior of the VCoNi medium-entropy alloys [J]. J. Alloys Compd., 2022, 920: 165954
27 Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
28 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
29 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
30 Li G R, Gao L P, Wang H M, et al. Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy [J]. J. Alloys Compd., 2021, 866: 157848
31 Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 105636
32 Yang Z, Cong D Y, Yuan Y, et al. Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials [J]. Mater. Res. Lett., 2019, 7: 137
doi: 10.1080/21663831.2019.1566182
33 Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
34 Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94
35 Pujar M G, Laha K, Dayal R K, et al. Studies on the effect of B and B + Ce additions on the electrochemical corrosion behaviour of 9Cr-1Mo using electrochemical noise (EN) technique [J]. Int. J. Electrochem. Sci., 2008, 3: 891
36 Wang L. Mechanical Properties of Materials [M]. 3rd Ed., Shenyang: Northeastern University Press, 2014: 80
36 王 磊. 材料的力学性能 [M]. 第 3版, 沈阳: 东北大学出版社, 2014: 80
37 Jia N, Roters F, Eisenlohr P, et al. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass [J]. Acta Mater., 2012, 60: 1099
38 Ullman N, Luko S. Statistical standards and ASTM [J]. Qual. Eng., 2010, 22: 358
39 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
40 Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
41 Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
42 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
42 王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
43 Tang Z Y, Wu Z Q, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation [J]. Acta Metall. Sin., 2011, 47: 1426
43 唐正友, 吴志强, 昝 娜 等. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为 [J]. 金属学报, 2011, 47: 1426
doi: 10.3724/SP.J.1037.2011.00311
44 Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
45 Li J G, Ding Y J, Peng X D, et al. Effects of water quenching process on the microstructure and mechanical properties of TWIP steel [J]. Acta Metall. Sin., 2010, 46: 221
45 李激光, 丁亚杰, 彭兴东 等. 水淬工艺对TWIP钢显微组织和力学性能的影响 [J]. 金属学报, 2010, 46: 221
doi: 10.3724/SP.J.1037.2009.00180
46 Sanyal S, Waghmare U V, Subramanian P R, et al. Effect of dopants on grain boundary decohesion of Ni: A first-principles study [J]. Appl. Phys. Lett., 2008, 93: 223113
47 Stinville J C, Gallup K, Pollock T M. Transverse creep of nickel-base superalloy bicrystals [J]. Metall. Mater. Trans., 2015, 46A: 2516
48 Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
49 Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
50 Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265: 376
pmid: 17838041
51 Messmer R P, Briant C L. The role of chemical bonding in grain boundary embrittlement [J]. Acta Metall., 1982, 30: 457
52 Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
53 Kraft R H, Molinari J F. A statistical investigation of the effects of grain boundary properties on transgranular fracture [J]. Acta Mater., 2008, 56: 4739
54 Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
[1] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] 于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
[3] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[4] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[5] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[6] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[7] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[8] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[9] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[10] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[11] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[12] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[13] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[14] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[15] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.