Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1502-1514    DOI: 10.11900/0412.1961.2024.00002
  研究论文 本期目录 | 过刊浏览 |
基于轧制温度调控的Fe50Mn29Co10Cr10Cu1 高熵合金微观组织与力学性能
王家骏1, 袁野1, 何竹风1, 朱明伟2(), 贾楠1()
1 东北大学 材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
2 沈阳航空航天大学 材料科学与工程学院 沈阳 110136
Microstructures and Mechanical Properties of the Fe50Mn29Co10Cr10Cu1 High-Entropy Alloy Regulated by Rolling Temperature
WANG Jiajun1, YUAN Ye1, HE Zhufeng1, ZHU Mingwei2(), JIA Nan1()
1 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

王家骏, 袁野, 何竹风, 朱明伟, 贾楠. 基于轧制温度调控的Fe50Mn29Co10Cr10Cu1 高熵合金微观组织与力学性能[J]. 金属学报, 2025, 61(10): 1502-1514.
Jiajun WANG, Ye YUAN, Zhufeng HE, Mingwei ZHU, Nan JIA. Microstructures and Mechanical Properties of the Fe50Mn29Co10Cr10Cu1 High-Entropy Alloy Regulated by Rolling Temperature[J]. Acta Metall Sin, 2025, 61(10): 1502-1514.

全文: PDF(6200 KB)   HTML
摘要: 

fcc高熵合金凭借良好的综合力学性能等特点受到广泛关注。但由于其屈服强度较低,亟待开发具有高屈服和抗拉强度的fcc结构高熵合金。本工作系统研究了Fe50Mn29Co10Cr10Cu1高熵合金经3种温度(-196、25和300 ℃)轧制和退火处理(500和800 ℃)后的微观组织特征和拉伸力学性能,分析了不同加工工艺制备合金的变形机制及其对材料宏观力学性能的影响。结果表明,在单轴拉伸变形中,液氮温度与室温轧制生成的形变孪晶和板条结构的逆相变奥氏体对位错有一定阻碍作用,提高了材料的屈服强度。由温轧结合退火制备的材料中仅存在少量形变孪晶,位错滑移和堆垛层错是其主要变形机制。液氮轧制结合500 ℃退火制备的材料虽然具备较高的屈服强度,但塑性差。经室温和300 ℃轧制并结合500 ℃退火制备的材料则表现出较高的屈服强度与一定的加工硬化能力,2者的屈服强度分别为752和604 MPa,抗拉强度分别为917和784 MPa,均匀延伸率分别为11.2%和26.2%。经不同温度轧制结合退火得到的合金微观组织不同,导致其在后续拉伸变形过程中的力学行为存在显著差异。

关键词 高熵合金轧制温度变形机制强韧化    
Abstract

Face-centered-cubic high-entropy alloys have attracted extensive attention due to their comprehensive mechanical and other properties. However, these alloys suffer from low yield strength, making it imperative to develop alloys with high yield and tensile strengths. This study systematically investigates the microstructural characteristics and tensile mechanical properties of the Fe50Mn29-Co10Cr10Cu1 high-entropy alloy processed by rolling at three temperatures (-196, 25, and 300 °C) followed by annealing. The aim is to elucidate the deformation mechanisms associated with different processing routes and their influences on strength and ductility. During uniaxial tensile deformation, deformation twins produced by liquid-nitrogen and room-temperature rolling along with lath-like reversed austenite impede dislocation slip, thereby improving the yield strength of the alloy. In contrast, the alloy processed by warm rolling and annealing shows few deformation twins, with dislocation slip and stacking faults dominating as the deformation mechanisms. The alloy processed by liquid-nitrogen rolling followed by 500 oC annealing exhibits high yield strength but poor plasticity. Conversely, alloys rolled at room temperature and 300 oC followed by 500 oC annealing demonstrate higher yield strengths and certain degree of work hardening capability, showing corresponding yield strengths of 752 and 604 MPa, tensile strengths of 917 and 784 MPa, and uniform elongations of 11.2% and 26.2%. The differing microstructures resulting from processing at varied temperatures and subsequent annealing lead to significant differences in mechanical behavior under tensile testing.

Key wordshigh-entropy alloy    rolling temperature    deformation mechanism    strengthening and toughening
收稿日期: 2024-01-05     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52371097);国家自然科学基金项目(52301135);国家自然科学基金项目(51922026)
通讯作者: 朱明伟,mwzhu@sau.edu.cn,主要从事先进金属材料的结构与功能一体化研究;
贾 楠,jian@atm.neu.edu.cn,主要从事金属材料的微观力学行为研究
作者简介: 王家骏,男,1998年生,硕士
图1  经轧制结合退火制备的样品拉伸前后的XRD谱
SampleTensile testfcchcp
LNR40% + AN500 oCBefore90.59.5
After85.814.2
CR40% + AN500 oCBefore92.37.7
After88.012.0
WR40% + AN500 oCBefore91.68.4
After87.712.3
LNR40% + AN800 oCBefore97.52.5
CR40% + AN800 oCBefore94.06.0
WR40% + AN800 oCBefore85.514.5
表1  经轧制结合退火制备的样品在拉伸前后的相组成 (volume fraction / %)
图2  经不同工艺制备的样品的SEM像及晶粒尺寸分布图
图3  经轧制结合500 ℃退火制备样品的EBSD像
图4  LNR40% + AN500 ℃样品的TEM像及选区电子衍射(SAED)花样
图5  CR40% + AN500 ℃样品的TEM像及SAED花样
图6  WR40% + AN500 ℃样品的TEM像及SAED花样
图7  不同工艺制备的样品工程应力-应变曲线、真应力-应变曲线和应变硬化率曲线
图8  冷轧样品的TEM像及SAED花样
图9  由轧制结合500和800 ℃退火制备的各样品修正Williamson-Hall (MWH)图及屈服强度贡献柱状图
图10  经轧制结合500 ℃退火制备的各样品在拉伸变形后的TEM像及SAED花样
[1] Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580 pmid: 24686581
[2] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[3] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2014, A375-377: 213
[4] Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
[5] Yoshida S, Ikeuchi T, Bhattacharjee T, et al. Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys [J]. Acta Mater., 2019, 171: 201
doi: 10.1016/j.actamat.2019.04.017
[6] Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
[7] Kao Y F, Chen S K, Sheu J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTix Vy Zrz alloys [J]. Int. J. Hydrogen Energy, 2010, 35: 9046
[8] Xiao N, Guan X, Wang D, et al. Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review [J]. Int. J. Miner. Metall. Mater., 2023, 30: 1667
[9] Liu M H, Du C W, Liu Z Y, et al. A review on pitting corrosion and environmentally assisted cracking on duplex stainless steel [J]. Microstructures, 2023, 3: 2023020
[10] Tian Y Z, Sun S J, Lin H R, et al. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation [J]. J. Mater. Sci. Technol., 2019, 35: 334
doi: 10.1016/j.jmst.2018.09.068
[11] Xu N, Huang Y B, Gao Y X, et al. Novel casting CoCrNiAl eutectic high entropy alloys with high strength and good ductility [J]. Microstructures, 2023, 3(3): 2023015
[12] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
[13] Xu X N, Li H J, Sun B Z, et al. Enhanced strength-ductility-toughness synergy in an HSLA steel with multi-gradient ultrafine grained structure by adopting a two-stage rolling coupling inter-pass ultra-fast cooling process [J]. J. Mater. Process. Technol., 2023, 313: 117832
[14] Jiang W, Wang H, Li Z M, et al. Enhanced mechanical properties of a carbon and nitrogen Co-doped interstitial high-entropy alloy via tuning ultrafine-grained microstructures [J]. J. Mater. Sci. Technol., 2023, 144: 128
doi: 10.1016/j.jmst.2022.10.024
[15] Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
[16] Chandan A K, Murugaiyan P, Chowdhury S G. Temperature-dependent stacking fault energy, deformation behavior, and tensile properties of a new high-entropy alloy [J]. Mater. Sci. Eng., 2023, A883: 145522
[17] Oh H S, Ma D C, Leyson G P, et al. Lattice Distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment [J]. Entropy, 2016, 18: 321
[18] Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
[19] Sun S J, Tian Y Z, Lin H R, et al. Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy [J]. Scr. Mater., 2019, 163: 111
[20] Sun S J, Tian Y Z, Lin H R, et al. Revisiting the role of prestrain history in the mechanical properties of ultrafine-grained CoCrFe-MnNi high-entropy alloy [J]. Mater. Sci. Eng., 2021, A801: 140398
[21] Moon J, Bouaziz O, Kim H S, et al. Twinning engineering of a CoCrFeMnNi high-entropy alloy [J]. Scr. Mater., 2021, 197: 113808
[22] Bouaziz O, Scott C P, Petitgand G. Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins [J]. Scr. Mater., 2009, 60: 714
[23] Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J]. Scr. Mater., 2008, 58: 484
[24] Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7: 1103
[25] He Z F. Microscopic deformation and strengthening-toughening of FeMnCoCr-based high-entropy alloys [D]. Shenyang: Northeastern University, 2021
[25] 何竹风. FeMnCoCr系高熵合金的微观形变与强韧化研究 [D]. 沈阳: 东北大学, 2021
[26] Zhang H T, Wang C L, Shi S Y, et al. Tuning deformation mechanisms of face-centered-cubic high-entropy alloys via boron doping [J]. J. Alloys Compd., 2022, 911: 165103
[27] Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704 pmid: 28079175
[28] He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
[29] He Z F, Guo Y X, Sun L F, et al. Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys [J]. Acta Mater., 2023, 243: 118495
[30] Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
[31] Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
[32] Sun S J, Tian Y Z, An X H, et al. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure [J]. Mater. Today Nano, 2018, 4: 46
[33] Ungár T, Gubicza J, Ribárik G, et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals [J]. J. Appl. Cryst., 2001, 34: 298
[34] Li X Q, Irving D L, Vitos L. First-principles investigation of the micromechanical properties of fcc-hcp polymorphic high-entropy alloys [J]. Sci. Rep., 2018, 8: 11196
doi: 10.1038/s41598-018-29588-z pmid: 30046064
[35] Ungár T, Dragomir I, Révész Á, et al. The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice [J]. J. Appl. Cryst., 1999, 32: 992
[36] Fullman R L. Measurement of particle sizes in opaque bodies [J]. JOM, 1953, 5: 447
[37] Mohammad-Ebrahimi M H, Zarei-Hanzaki A, Abedi H R, et al. The enhanced static recrystallization kinetics of a non-equiatomichigh entropy alloy through the reverse transformation of strain induced martensite [J]. J. Alloys Compd., 2019, 806: 1550
[38] Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scr. Mater., 2001, 45: 767
[39] He B B, Wang M, Huang M X. Improving tensile properties of room-temperature quenching and partitioning steel by dislocation engineering [J]. Metall. Mater. Trans., 2019, 50A: 4021
[40] Toth L S, Gu C F, Beausir B, et al. Geometrically necessary dislocations favor the Taylor uniform deformation mode in ultra-fine-grained polycrystals [J]. Acta Mater., 2016, 117: 35
[41] Zhu C Y, Harrington T, Gray III G T, et al. Dislocation-type evolution in quasi-statically compressed polycrystalline nickel [J]. Acta Mater., 2018, 155: 104
[42] Yan B Y, Jiang S Y, Hu L, et al. Crystal plasticity finite element simulation of NiTi shape memory alloy under canning compression based on constitutive model containing dislocation density [J]. Mech. Mater., 2021, 157: 103830
[43] Zhi H H, Zhang C, Antonov S, et al. Investigations of dislocation-type evolution and strain hardening during mechanical twinning in Fe-22Mn-0.6C twinning-induced plasticity steel [J]. Acta Mater., 2020, 195: 371
[44] Brinckmann S, Siegmund T, Huang Y G. A dislocation density based strain gradient model [J]. Int. J. Plast., 2006, 22: 1784
[45] Muránsky O, Balogh L, Tran M, et al. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques [J]. Acta Mater., 2019, 175: 297
[46] Liu Y, Cai S L. Gradients of strain to increase strength and ductility of magnesium alloys [J]. Metals, 2019, 9: 1028
[47] Huang M X, He B B. Alloy design by dislocation engineering [J]. J. Mater. Sci. Technol., 2018, 34: 417
doi: 10.1016/j.jmst.2017.11.045
[48] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
[49] Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
[50] Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
[51] Wang M M, Li Z M, Raabe D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy [J]. Acta Mater., 2018, 147: 236
[52] Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
[52] 张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
[53] Liu Y X, Zhang H F, Yang Y L, et al. Chemical short-range order dependence of micromechanical behavior in CoCrNi medium-entropy alloy studied by atomic simulations [J]. J. Alloys Compd., 2023, 968: 172002
[54] Lu W J, Liebscher C H, Dehm G, et al. Bidirectional transformation enables hierarchical nanolaminate dual-phase HEAs [J]. Adv. Mater., 2018, 30: 1804727
[55] Yuan Y, Wang J J, Wei J, et al. Cu alloying enables superior strength-ductility combination and high corrosion resistance of FeMnCoCr high entropy alloy [J]. J. Alloys Compd., 2024, 970: 172543
[56] Zhu Y T, Liao X Z, Wu X L. Deformation twinning in nanocrystalline materials [J]. Prog. Mater. Sci., 2012, 57: 1
[1] 韩晓东, 安子冰, 毛圣成, 龙海波, 杨鲁岩, 张泽. 负混合焓合金化推动高强韧合金发展[J]. 金属学报, 2025, 61(7): 953-960.
[2] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[3] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[4] 王志军, 白晓昱, 王健斌, 姜慧, 焦文娜, 李天昕, 卢一平. 共晶高熵合金十年发展回顾(20142024):设计、制备与应用[J]. 金属学报, 2025, 61(1): 1-11.
[5] 夏兴川, 张恩宽, 丁俭, 王玉江, 刘永长. 激光熔覆难熔高熵合金涂层研究进展[J]. 金属学报, 2025, 61(1): 59-76.
[6] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[7] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[8] 卢健麟, 任化永, 谢桉, 王建潼, 何峰. Ni43.5Co19Cr10Fe10Al15Ti2Mo0.5 共晶高熵合金快速凝固行为及组织调控[J]. 金属学报, 2025, 61(1): 191-202.
[9] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[10] 王瀚铭, 杜银, 裴旭辉, 王海丰. 共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946.
[11] 刘金来, 孙晶霞, 孟杰, 李金国. 一种第三代单晶高温合金的组织稳定性与持久性能[J]. 金属学报, 2024, 60(6): 770-776.
[12] 南勇, 关旭, 闫海乐, 唐帅, 贾楠, 赵骧, 左良. B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理[J]. 金属学报, 2024, 60(12): 1647-1655.
[13] 陈占兴, 王玉鹏, 荣光飞, 张新房, 马腾飞, 王晓红, 邢秋玮, 朱冬冬. 微纳米Ti2AlC增强TiAl复合材料高温强韧化机制[J]. 金属学报, 2024, 60(12): 1746-1754.
[14] 唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
[15] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.