Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1055-1063    DOI: 10.11900/0412.1961.2024.00066
  研究论文 本期目录 | 过刊浏览 |
热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响
李彪1,2, 张龙1(), 颜廷毅1, 付华萌1(), 袁旭东1, 文明月3, 张宏伟1, 李宏4, 张海峰4
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 沈阳理工大学 材料科学与工程学院 沈阳 110159
4 东北大学 冶金学院 沈阳 110819
Effects of Heat Treatment Processes and W Wire Properties on Residual Stress in W Wire Reinforced Zr-Based Metallic Glass Composites
LI Biao1,2, ZHANG Long1(), YAN Tingyi1, FU Huameng1(), YUAN Xudong1, WEN Mingyue3, ZHANG Hongwei1, LI Hong4, ZHANG Haifeng4
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
4 School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

李彪, 张龙, 颜廷毅, 付华萌, 袁旭东, 文明月, 张宏伟, 李宏, 张海峰. 热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响[J]. 金属学报, 2024, 60(8): 1055-1063.
Biao LI, Long ZHANG, Tingyi YAN, Huameng FU, Xudong YUAN, Mingyue WEN, Hongwei ZHANG, Hong LI, Haifeng ZHANG. Effects of Heat Treatment Processes and W Wire Properties on Residual Stress in W Wire Reinforced Zr-Based Metallic Glass Composites[J]. Acta Metall Sin, 2024, 60(8): 1055-1063.

全文: PDF(1765 KB)   HTML
摘要: 

为了调控W丝增强锆基非晶复合材料在制备过程中产生的残余应力,采用中子衍射技术对不同热处理条件后的W丝增强的非晶复合材料进行应力分布状态的测量。实验结果表明,W丝轴向方向具有强烈的<110>织构和较低的精修残差值(Rwp),证实了精修数据的准确性。首先,在200℃下回火处理30 min可以有效降低非晶复合材料内部的残余应力;但当回火时间增加到60 min时,其应力会再次增大。通过对W丝进行烧氢处理,发现非晶复合材料内部的残余应力可以有效地降低。另外,非晶复合材料内部的残余应力对W丝直径变化并不敏感。

关键词 非晶复合材料残余应力中子衍射回火处理烧氢处理    
Abstract

Bulk metallic glasses (BMGs) are exhibit a unique atomic structure and have a long-range disorder but short-to-medium-range order, contrasting sharply with the periodic arrangements found in crystalline materials. This distinct arrangement grants BMGs exceptional properties such as high strength, significant elastic limits, and high resistance to corrosion and wear. However, BMGs are brittle owing to localized shear band propagation during deformation under load, particularly at temperatures below their glass transition temperature. This brittleness restricts their practical applications, prompting researchers to explore methods to enhance their ductility. One prominent approach involves the development of bulk metallic glass composites (BMGCs) via incorporating a secondary phase that effectively mitigates the single shear band instability and promotes multiple shear bands to partake in plastic deformation, significantly enhancing the room-temperature ductility. BMGCs reinforced with W wire are noteworthy owing to the high density and strength of W, making these materials highly applicable in the defense sector. By embedding W wires homogeneously into a BMG matrix such as Vitreloy 1 (Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, atomic fraction, %), the resulting composite has high compressive strength and ductility. Despite these benefits, the production of W wire-reinforced BMGCs inevitably introduces thermal residual stresses owing to the differences in the coefficients of thermal expansion of the composite components. These stresses can significantly affect the mechanical properties of the BMGCs. Advanced nondestructive techniques such as neutron diffraction have become indispensable tools for evaluating the internal stress distribution within such materials. Neutron diffraction enables the measurement of stresses deep within the materials, providing a comprehensive view of the entire sample volume, which is crucial for optimizing the manufacturing processes and enhancing the performance of the BMGCs. This work aims to comprehensively investigate the effects of various processing parameters, such as the diameter of the W wires and temperature, on the residual stresses within W wire-reinforced BMGCs. By using neutron diffraction to analyze the effects of annealing treatment of W wires in hydrogen, heat treatment duration of BMGCs, and W wire diameter on residual stresses, this work aims to finely tune the internal stresses during the manufacturing process, thereby laying a foundation for optimizing and improving the material properties of W wire-reinforced BMGCs. The results reveal a strong <110> texture along the axial direction of the W wire and a low refined residual value (Rwp), confirming the accuracy of the refined data. The tempering process demonstrates a complex influence on the control of residual stresses within W wire-reinforced BMGCs. Measurements and analyses of residual stresses after different tempering treatments reveal that a 30 min temper at 200oC effectively reduces residual stresses. However, extending the tempering duration to 60 min leads to the reaccumulation of stresses owing to complex reactions within the BMGCs. In addition, a comparative analysis of W wire-reinforced BMGCs annealed in the present and absence of hydrogen indicates that the former significantly improves the surface quality of W wires, thereby reducing the residual stresses in the BMGCs. After annealing in hydrogen, the diameter of W wires increases from 0.2 mm to 0.3 mm, which has little effect on the overall stress distribution.

Key wordsmetallic glass composites    residual stress    neutron diffraction    annealing treatment    annealing in hydrogen
收稿日期: 2024-03-05     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金项目(52171164);中国科学院依托重大科技基础设施的建制化科研项目(JZHKYPT-2021-01);中国科学院青年创新促进会项目(2021188);中国载人航天工程空间应用系统项目(YYMT1201-EXP08);中国科学院金属研究所创新基金项目(2024-PY18);冲击环境材料技术重点实验室基金项目(WDZC2022-13);辽宁省教育厅一般科研项目(LJKQZ20222306)
通讯作者: 张 龙,zhanglong@imr.ac.cn,主要从事非晶合金及其复合材料、高熵合金等新金属材料研究付华萌,hmfu@imr.ac.cn,主要从事非晶合金及其复合材料、高熵合金等新金属材料研究
Corresponding author: ZHANG Long, professor, Tel: (024)83970248, E-mail: zhanglong@imr.ac.cnFU Huameng, professor, Tel: (024)23971782, E-mail: hmfu@imr.ac.cn
作者简介: 李 彪,男,1995年生,博士
ProcessMaterialSpecimenDiameter of W / mmTempering process
NAWNA2-W0.2None
BMGCsNA2-AC0.2None
BMGCsNA2-300.2200oC, 30 min
BMGCsNA2-600.2200oC, 60 min
AHWAH2-W0.2None
BMGCsAH2-AC0.2None
WAH3-W0.3None
BMGCsAH3-AC0.3None
BMGCsAH3-300.3200oC, 30 min
表1  样品制备工艺及参数
图1  中子衍射实验装置示意图
图2  AH3-AC样品横截面的SEM像和AH3-W样品纵截面和横截面的EBSD像
图3  不同热处理工艺条件下以直径0.2 mm未烧氢W丝作为增强相的非晶复合材料轴向和径向的中子衍射数据精修结果
SpecimenAxial directionRadial direction
a / nmε / %σ / MPaa / nmε / %σ / MPa
NA2-W0.316594000.31643500
NA2-AC0.316504-0.028-88.4510.3164820.014950.182
NA2-300.316568-0.0082-35.3150.3164410.0019-2.936
NA2-600.316473-0.038-184.8660.3164470.00379-50.297
表2  不同热处理工艺下以直径0.2 mm未烧氢W丝作为增强相的非晶复合材料的残余应力分布
图4  以直径0.2 mm烧氢W丝作为增强相的非晶复合材料轴向和径向中子衍射数据的精修结果
SpecimenAxial directionRadial direction
a / nmε / %σ / MPaa / nmε / %σ / MPa
AH2-W0.316469000.31643900
AH2-AC0.316443-0.0082-41.7740.3164410.000316-14.446
表3  以直径0.2 mm 烧氢W丝作为增强相的非晶复合材料的残余应力分布
图5  不同热处理工艺条件下以直径0.3 mm烧氢W丝作为增强相的非晶复合材料轴向和径向中子衍射数据的精修结果
ProcessAxial directionRadial direction
a / nmε / %σ / MPaa / nmε / %σ / MPa
AH3-W0.316504000.31646800
AH3-AC0.316473-0.0098-47.47310.3164710.000948-13.064
AH3-300.316474-0.0095-43.2410.3164730.00158-7.819
表4  不同热处理工艺下以直径0.3 mm烧氢W丝作为增强相的非晶复合材料的残余应力分布
1 Miracle D B. A structural model for metallic glasses [J]. Nat. Mater., 2004, 3: 697
pmid: 15378050
2 Zhang L, Narayan R L, Fu H M, et al. Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites [J]. Acta Mater., 2019, 168: 24
doi: 10.1016/j.actamat.2019.02.002
3 Zhang B, Fu H M, Zhu Z W, et al. Effect of W fiber diameter on the compressive mechanical properties of the Zr-based metallic glass composites [J]. Acta Metall. Sin., 2013, 49: 1191
doi: 10.3724/SP.J.1037.2013.00230
3 张 波, 付华萌, 朱正旺 等. W纤维直径对锆基非晶复合材料压缩力学性能的影响 [J]. 金属学报, 2013, 49: 1191
4 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33(5): 177
4 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177
5 Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
5 张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
6 Pekarskaya E, Kim C P, Johnson W L. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite [J]. J. Mater. Res., 2001, 16: 2513
7 Yan T Y, Zhang L, Narayan R L, et al. Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals [J]. Acta Mater., 2022, 229: 117827
8 Zhang L, Zhu Z W, Fu H M, et al. Improving plasticity and work-hardening capability of β-type bulk metallic glass composites by destabilizing β phases [J]. Mater. Sci. Eng., 2017, A689: 404
9 Zhang L, Yan T Y, Şopu D, et al. Shear-band blunting governs superior mechanical properties of shape memory metallic glass composites [J]. Acta Mater., 2022, 241: 118422
10 Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater. Sci. Eng., 1998, A243: 244
11 Mahmoodan M, Gholamipour R, Mirdamadi S, et al. Microstructure and interfacial shear strength in W/(Zr55Cu30Al10Ni5)100 - x Nb x composites [J]. J. Mater. Eng. Perform., 2017, 26: 5571
12 Li J C, Chen X W, Huang F L. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite [J]. Mater. Sci. Eng., 2016, A652: 145
13 Xue Y F, Zhong X, Wang L, et al. Effect of W volume fraction on dynamic mechanical behaviors of W fiber/Zr-based bulk metallic glass composites [J]. Mater. Sci. Eng., 2015, A639: 417
14 Zhang B, Fu H M, Sha P F, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites [J]. Mater. Sci. Eng., 2013, A566: 16
15 Son C Y, Kim G S, Lee S B, et al. Correlation of microstructure with mechanical properties of Zr-based amorphous matrix composite reinforced with tungsten continuous fibers and ductile dendrites [J]. Metall. Mater. Trans., 2012, 43A: 4088
16 Zhang H, Liu L Z, Zhang Z F, et al. Deformation and fracture behavior of tungsten fiber-reinforced bulk metallic glass composite subjected to transverse loading [J]. J. Mater. Res., 2006, 21: 1375
17 Li Y, Cheng X W, Li G J, et al. Effect of particle size on dynamic mechanical behaviors of W particles/Zr-based bulk metallic glass composites [J]. J. Alloys Compd., 2021, 885: 9
18 Clausen B, Lee S Y, Üstündag E, et al. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites [J]. Scr. Mater., 2003, 49: 123
19 Guo W Q, Wang S W, Li G J, et al. Self-sharpening mechanism of kinetic energy penetrator nose constructed of tungsten-fiber-reinforced Cu-Zn matrix composite [J]. J. Mater. Res. Technol., 2023, 24: 1589
20 Zhang X Q, Xue Y F, Zhang H F, et al. Thermal residual stresses in W fibers/Zr-based metallic glass composites by high-energy synchrotron X-ray diffraction [J]. J. Mater. Sci. Technol., 2015, 31: 159
doi: 10.1016/j.jmst.2014.04.001
21 Dragoi D, Üstündag E, Clausen B, et al. Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites [J]. Scr. Mater., 2001, 45: 245
22 Aydıner C C, Üstündag E, Clausen B, et al. Residual stresses in a bulk metallic glass-stainless steel composite [J]. Mater. Sci. Eng., 2005, A399: 107
23 Conner R D, Dandliker R B, Scruggs V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. Int. J. Impact. Eng., 2000, 24: 435
24 Li S L, Li Y, Wang Y K, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
24 李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
25 Chen S, Li W Q, Zhang L, et al. Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites [J]. Composites, 2020, 199B: 108219
26 Guo G F, Li J B, Yang X Z, et al. Direct measurement of residual stresses and their effects on the microstructure and mechanical properties of heat-treated Si3N4 ceramics [J]. Acta Mater., 2006, 54: 2311
27 Schneider L C R, Hainsworth S V, Cocks A C F, et al. Neutron diffraction measurements of residual stress in a powder metallurgy component [J]. Scr. Mater., 2005, 52: 917
28 Menig R, Pintschovius L, Schulze V, et al. Depth profiles of macro residual stresses in thin shot peened steel plates determined by X-ray and neutron diffraction [J]. Scr. Mater., 2001, 45: 977
29 Wang L, Bei H, Gao Y F, et al. Effect of residual stresses on the onset of yielding in a Zr-based metallic glass [J]. Acta Mater., 2011, 59: 7627
30 Woo W, Feng Z, Wang X L, et al. Neutron diffraction measurements of time-dependent residual stresses generated by severe thermomechanical deformation [J]. Scr. Mater., 2009, 61: 624
31 Nadahara S, Kubota H, Samata S. Hydrogen annealed silicon wafer [J]. Solid State Phenom., 1997, 57-58: 19
32 Dandliker R B, Conner R D, Johnson W L. Melt infiltration casting of bulk metallic-glass matrix composites [J]. J. Mater. Res., 1998, 13: 2896
33 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
34 Toby B H, Von Dreele R B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package [J]. J. Appl. Cryst., 2013, 46: 544
35 Hao H, Maijer D, Rogge R. Investigation of residual strains by neutron diffraction in an AZ31 direct chill cast billet [J]. NDT E Int., 2009, 42: 704
36 Wu Z, Kang P C, Wu G H, et al. The effect of interface modification on fracture behavior of tungsten fiber reinforced copper matrix composites [J]. Mater. Sci. Eng., 2012, A536: 45
[1] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[2] 王浩宇, 吕熙睿, 陈琦, 熊瑛, 罗志新, 张洁, 王京阳. 高熵稀土单硅酸盐环境障涂层局域结构的原子对分布函数解析[J]. 金属学报, 2024, 60(8): 1130-1140.
[3] 林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
[4] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[5] 任卫军, 安萌, 高飞, 罗小华, 李昺, 张志东, 王进威. 三方Cr5Te8 的磁结构和反常热膨胀[J]. 金属学报, 2024, 60(8): 1150-1154.
[6] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
[7] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[8] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[9] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[11] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[12] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.