Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1031-1042    DOI: 10.11900/0412.1961.2024.00059
  研究论文 本期目录 | 过刊浏览 |
深冷循环对SiC/Al复合材料宏微观残余应力的影响
谷黎明1,2, 冯效铭1,2, 于朝1,2, 张峻凡1(), 刘振宇1, 何伦华3,4,5, 卢怀乐3,6, 李小虎3, 王晨3, 张晓东3, 肖伯律1, 马宗义1
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 散裂中子源科学中心 东莞 523803
4 中国科学院物理研究所 北京凝聚态物理国家研究中心 北京 100190
5 松山湖材料实验室 东莞 523808
6 中国科学院高能物理研究所 北京 100049
Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites
GU Liming1,2, FENG Xiaoming1,2, YU Zhao1,2, ZHANG Junfan1(), LIU Zhenyu1, HE Lunhua3,4,5, LU Huaile3,6, LI Xiaohu3, WANG Chen3, ZHANG Xiaodong3, XIAO Bolv1, MA Zongyi1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Spallation Neutron Source Science Center, Dongguan 523803, China
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
6 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
引用本文:

谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
Liming GU, Xiaoming FENG, Zhao YU, Junfan ZHANG, Zhenyu LIU, Lunhua HE, Huaile LU, Xiaohu LI, Chen WANG, Xiaodong ZHANG, Bolv XIAO, Zongyi MA. Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites[J]. Acta Metall Sin, 2024, 60(8): 1031-1042.

全文: PDF(4474 KB)   HTML
摘要: 

铝基碳化硅 (SiC/Al)复合材料因其高比模量、高比强度和良好尺寸稳定性等特点广泛应用于精密光学领域。SiC/Al复合材料热处理过程中产生的宏/微观残余应力是影响其尺寸稳定性的关键因素。为了阐明残余应力的降低方法和效果,提高精密光学零件的尺寸稳定性,本工作使用中子衍射和有限元模拟,分析了深冷循环处理对于体积分数为35%的SiC/6092Al复合材料在退火状态下宏微观残余应力的影响,研究了深冷循环次数、样品尺寸、增强相颗粒尺寸和深冷循环温度差等影响因素。结果表明,深冷循环能引起基体塑性应变,从而显著降低退火态SiC/Al复合材料的相应力,并且随着深冷循环次数的增加,单次循环相应力降低效果减弱。深冷循环导致的塑性应变集中在颗粒周围的基体,主要影响颗粒和周围基体的相应力大小,与样品尺寸无明显关联,并且深冷循环不增加退火态样品的宏观残余应力。复合材料多次深冷循环后的相应力降低量与SiC颗粒尺寸无关,并且,多次深冷循环对相应力的降低效果与深冷循环温度差关系较小,100~-196℃和200~-196℃进行多次深冷循环对相应力的改变十分接近。

关键词 深冷循环中子衍射残余应力有限元方法代表性体积单元    
Abstract

Aluminum-based silicon carbide (SiC/Al) composites are widely used in the field of precision optics by virtue of their high specific modulus, high specific strength, and excellent dimensional stability. The dimensional stability of these composites is primarily influenced by macroscopic and microscopic residual stresses induced during the heat treatment process. This study employed neutron diffraction and finite element method (FEM) to investigate the impact of cryogenic cycle treatment on both macroscopic and microscopic residual stresses within the 35%SiC/6092Al composite material in the annealed state. The results of this study will clarify the methods and effects of reducing the residual stress and improving the dimensional stability of precision optical parts. The study focused on the influencing factors such as the number of cryogenic cycles, sample size, reinforcement particle size, and temperature difference of cryogenic cycles. The results show that the deep cryogenic cycles can remarkably reduce the internal stress of SiC/Al composites in the annealed state; as the number of cryogenic cycles increases, the internal stress reduction effect of a single cycle weakens. The cryogenic cycles primarily induce plastic strain in the matrix around particles, thereby influencing the internal stress between the particles and the surrounding matrix. No significant relationship is found between cryogenic cycles and external dimensions. Moreover, the cryogenic cycle barely increases the macroscopic stress of the annealed sample. For composites with equal volume fraction of SiC particles, the reduction in the internal stress after multiple cryogenic cycles is the same regardless of the SiC size. Moreover, the effect of multiple cryogenic cycles on the reduction in internal stress has little to do with the cryogenic cycle temperature difference. Cryogenic cycles at temperatures ranges of 100~-196°C and 200~-196°C exhibit almost identical alterations in internal stress.

Key wordscryogenic cycle    neutron diffraction    residual stress    finite element method    representative volume element
收稿日期: 2024-02-29     
ZTFLH:  TB333  
基金资助:国家重点研发计划项目(2022YFB3705705);国家自然科学基金项目(52192594);国家自然科学基金项目(51931009);中国科学院高性能工程材料建制化平台项目(JZHKYPT-2021-01);中国科学院青年创新促进会基金项目(2020197)
通讯作者: 张峻凡,jfzhang@imr.ac.cn,主要从事金属基复合材料制备加工、多尺度模拟与大科学装置表征研究
Corresponding author: ZHANG Junfan, associate professor, Tel: (024)83970048, E-mail: jfzhang@imr.ac.cn
作者简介: 谷黎明,男,1997年生,博士生
图1  中子衍射应力测现场图及尺寸图,及中子衍射光路图
图2  35%SiC/Al复合材料代表性体积单元模型
PhaseParameterValueUnit
AlConductivity174.57[30]mJ·(s·mm·oC)-1
Young's modulus68.00GPa
Poisson's ratio0.33-
Thermal expansion coefficient2.30 × 10-5K-1
Yield stress200MPa
SiCConductivity120.00mJ·(s·mm·℃)-1
Young's modulus415.00GPa
Poisson's ratio0.17-
表1  数值模拟中使用的材料参数
图3  不同SiC颗粒尺寸初始退火态SiC/6092Al复合材料的SEM像
图4  试样尺寸和应力测量位置,及宏观应力、Al相应力、SiC相应力结果
图5  D120试样不同深冷循环次数时Al和SiC相应力及材料宏观应力对比
图6  D120试样深冷循环前后Al和SiC的相应力
图7  D120试样不同深冷循环后Al相等效塑性应变的分布情况及基体等效塑性应变对比图
图8  不同尺寸的样品深冷循环前后相应力和宏观应力对比图
图9  不同SiC颗粒尺寸在不同深冷循环温度差下相应力和宏观应力
1 Miracle D B. Metal matrix composites—From science to technological significance [J]. Compos. Sci. Technol., 2005, 65: 2526
2 Cheng S Y, Cao Q, Bao J X, et al. Research and development of medium/high volume fraction SiCp/Al composites [J]. Chin. Opt., 2019, 12: 1064
2 程思扬, 曹 琪, 包建勋 等. 中高体积分数SiCp/Al复合材料研究进展 [J]. 中国光学, 2019, 12: 1064
3 Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
4 Rajak D K, Pagar D D, Kumar R, et al. Recent progress of reinforcement materials: A comprehensive overview of composite materials [J]. J. Mater. Res. Technol., 2019, 8: 6354
5 Withers P J, Bhadeshia H K D H. Residual stress. Part 2—Nature and origins [J]. Mater. Sci. Technol., 2001, 17: 366
6 Withers P J. Residual stress and its role in failure [J]. Rep. Prog. Phys., 2007, 70: 2211
7 Wu G H, Qiao J, Jiang L T. Research progress on principle of dimensional stability and stabilization design of Al and its composites [J]. Acta Metall. Sin., 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
7 武高辉, 乔 菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展 [J]. 金属学报, 2019, 55: 33
doi: 10.11900/0412.1961.2018.00482
8 Gong D, Cao Y F, Qian J R, et al. Microstructural evolution and dimensional stability of 45vol% SiC/Al composites under long-term aging [J]. J. Alloys Compd., 2023, 938: 168536
9 Gong D, Zhu M, Cao Y F, et al. Revealing the mechanism of internal stress on dimensional stability in SiC/Al composites under long-term thermal exposure [J]. Vacuum, 2023, 209: 111786
10 Qu S G, Lou H S, Li X Q, et al. Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content [J]. Mater. Des., 2015, 86: 508
11 Wang K, Li W F, Jin S X, et al. Effect of thermal shock induced dislocation multiplication on the thermal conductivity of 60 vol% SiCp/Al-7Si composites [J]. Compos. Commun., 2023, 39: 101554
12 Liu J Q, Wang H M, Li G R, et al. Microstructure and improved plasticity of (FeCoNi1.5CrCu)p/Al composites subject to adjusted deep cryogenic treatment (DCT) [J]. J. Alloys Compd., 2022, 895: 162690
13 Yao E Z, Zhang H J, Ma K, et al. Effect of deep cryogenic treatment on microstructures and performances of aluminum alloys: A review [J]. J. Mater. Res. Technol., 2023, 26: 3661
14 Evsevleev S, Sevostianov I, Mishurova T, et al. Explaining deviatoric residual stresses in aluminum matrix composites with complex microstructure [J]. Metall. Mater. Trans., 2020, 51A: 3104
15 Withers P J, Bhadeshia H K D H. Residual stress. Part 1—Measurement techniques [J]. Mater. Sci. Technol., 2001, 17: 355
16 Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components [J]. Mater. Des., 2012, 35: 572
17 Withers P J. Mapping residual and internal stress in materials by neutron diffraction [J]. C. R. Phys., 2007, 8: 806
18 Fernández R, Bruno G, González-Doncel G. Correlation between residual stresses and the strength differential effect in PM 6061Al-15 vol% SiCw composites: Experiments, models and predictions [J]. Acta Mater., 2004, 52: 5471
19 Fitzpatrick M E, Hutchings M T, Withers P J. Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements [J]. Acta Mater., 1997, 45: 4867
20 Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
21 Balokhonov R, Romanova V, Zinovieva O, et al. Microstructure-based analysis of residual stress concentration and plastic strain localization followed by fracture in metal-matrix composites [J]. Eng. Fract. Mech., 2022, 259: 108138
22 Sharma N K. Thermo-mechanical analysis of uniform, clustered and interpenetrating phase particulate composites using finite element method [J]. J. Therm. Anal. Calorim., 2023, 148: 5967
23 Chen J, Kang L, Lu H L, et al. The general purpose powder diffractometer at CSNS [J]. Physica, 2018, 551B: 370
24 Li S L, Li Y, Wang Y k, et al. Multiscale residual stress evaluation of engineering materials/components based on neutron and synchrotron radiation technology [J]. Acta Metall. Sin., 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
24 李时磊, 李 阳, 王友康 等. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价 [J]. 金属学报, 2023, 59: 1001
doi: 10.11900/0412.1961.2023.00157
25 Hao J Z, Tan Z J, Lu H L, et al. Residual stress measurement system of the general purpose powder diffractometer at CSNS [J]. Nucl. Instrum. Methods Phys. Res., 2023, 1055A: 168532
26 Hutchings M T, Krawitz A D. Measurement of Residual and Applied Stress Using Neutron Diffraction [M]. Dordrecht: Springer, 1992: 6
27 Hutchings M T, Withers P J, Holden T M, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction [M]. Boca Raton: Taylor & Francis, 2005: 299
28 Zhang J F, Andrä H, Zhang X X, et al. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites [J]. Compos. Struct., 2019, 226: 111281
29 Zhang J F, Zhang X X, Andrä H, et al. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87: 167
doi: 10.1016/j.jmst.2021.01.079
30 Xu Y B, Tanaka Y, Goto M, et al. Thermal conductivity of SiC fine particles reinforced Al alloy matrix composite with dispersed particle size [J]. J. Appl. Phys., 2004, 95: 722
31 Deng K K, Wang X J, Wu Y W, et al. Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite [J]. Mater. Sci. Eng., 2012, A543: 158
32 Zhang J F, Zhang X X, Wang Q Z, et al. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
33 Chen N, Zhang H X, Gu M Y, et al. Effect of thermal cycling on the expansion behavior of Al/SiCp composite [J]. J. Mater. Process. Technol., 2009, 209: 1471
34 Hu D Y, Tian T Y, Wang X, et al. Surface hardening analysis for shot peened GH4720Li superalloy using a DEM-FEM coupling RV simulation method [J]. Int. J. Mech. Sci., 2021, 209: 106689
35 Liu S, Fang G D, Fu M Q, et al. A coupling model of element-based peridynamics and finite element method for elastic-plastic deformation and fracture analysis [J]. Int. J. Mech. Sci., 2022, 220: 107170
36 Song P, Yabuuchi K, Spätig P. Insights into hardening, plastically deformed zone and geometrically necessary dislocations of two ion-irradiated FeCrAl(Zr)-ODS ferritic steels: A combined experimental and simulation study [J]. Acta Mater., 2022, 234: 117991
37 Wang Z Y, Cochrane C, Skippon T, et al. Dislocation evolution at a crack-tip in a hexagonal close packed metal under plane-stress conditions [J]. Acta Mater., 2019, 164: 25
38 Zhu S Z, Wang D, Xiao B L, et al. Suppressed negative effects of natural aging by pre-aging in SiCp/6092Al composites [J]. Composites, 2021, 212B: 108730
39 Samuel A, Prabhu K N. Residual stress and distortion during quench hardening of steels: A review [J]. J. Mater. Eng. Perform., 2022, 31: 5161
40 Sonar T, Lomte S, Gogte C. Cryogenic treatment of metal—A review [J]. Mater. Today: Proc., 2018, 5: 25219
[1] 任卫军, 安萌, 高飞, 罗小华, 李昺, 张志东, 王进威. 三方Cr5Te8 的磁结构和反常热膨胀[J]. 金属学报, 2024, 60(8): 1150-1154.
[2] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[3] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[4] 李彪, 张龙, 颜廷毅, 付华萌, 袁旭东, 文明月, 张宏伟, 李宏, 张海峰. 热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响[J]. 金属学报, 2024, 60(8): 1055-1063.
[5] 王浩宇, 吕熙睿, 陈琦, 熊瑛, 罗志新, 张洁, 王京阳. 高熵稀土单硅酸盐环境障涂层局域结构的原子对分布函数解析[J]. 金属学报, 2024, 60(8): 1130-1140.
[6] 林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
[7] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.
[8] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[9] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[11] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[12] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[13] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.