Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1150-1154    DOI: 10.11900/0412.1961.2024.00008
  研究论文 本期目录 | 过刊浏览 |
三方Cr5Te8 的磁结构和反常热膨胀
任卫军1,2(), 安萌1,2, 高飞1,2, 罗小华1, 李昺1,2, 张志东1,2, 王进威3
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
3 Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
Magnetic Structure and Abnormal Thermal Expansion of Trigonal Cr5Te8
REN Weijun1,2(), AN Meng1,2, GAO Fei1,2, LUO Xiaohua1, LI Bing1,2, ZHANG Zhidong1,2, WANG Chin-Wei3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
引用本文:

任卫军, 安萌, 高飞, 罗小华, 李昺, 张志东, 王进威. 三方Cr5Te8 的磁结构和反常热膨胀[J]. 金属学报, 2024, 60(8): 1150-1154.
Weijun REN, Meng AN, Fei GAO, Xiaohua LUO, Bing LI, Zhidong ZHANG, Chin-Wei WANG. Magnetic Structure and Abnormal Thermal Expansion of Trigonal Cr5Te8[J]. Acta Metall Sin, 2024, 60(8): 1150-1154.

全文: PDF(1372 KB)   HTML
摘要: 

很多二元Cr-Te化合物具有NiAs结构,其中金属Cr原子出现不同程度的有序缺位。Cr5Te8有三方和单斜2种结构,本工作采用粉末X射线和中子衍射结合Rietveld全谱拟合,确定了用自助溶剂生长的三方Cr5Te8单晶具有P3¯m1晶体结构,点阵参数a = 0.3900 nm,c = 0.5986 nm。粉末中子衍射实验揭示Cr5Te8是磁矩沿c方向的共线铁磁化合物,a方向具有小的负热膨胀,c方向显示正常热膨胀。以最低温3.3 K为参考温度点,在3.3~300 K温度范围内,a方向平均热膨胀系数为-10.7 × 10-6 K-1c方向平均膨胀系数为52.4 × 10-6 K-1。[101]、[302]和[201]取向的Cr5Te8具有近零热膨胀,具备应用前景。Cr5Te8的反常热膨胀与其磁有序没有明显关联,可能与晶格中存在大量的Cr空位有关。

关键词 粉末中子衍射负热膨胀磁结构    
Abstract

Many binary Cr-Te compounds can be regarded as formed due to varying degrees of ordered vacancies of metal Cr atoms in Cr-Te with the NiAs structure. Among them, Cr5Te8 shows two structures: trigonal and monoclinic. This study determined that Cr5Te8 grown using the self-flux method shows a trigonal P3¯m1 crystal structure with lattice constants a = 0.3900 nm and c = 0.5986 nm, as elucidated through the Rietveld refinement of powder X-ray and neutron diffraction patterns. Neutron powder diffraction experiments reveal its collinear ferromagnetic compound, with Cr magnetic moments oriented along the c axis. In addition, it exhibits low negative thermal expansion along the a direction and normal thermal expansion along the c direction. Within the temperature range of 3.3-300 K, using the lowest temperature of 3.3 K as a reference, the average thermal expansion coefficient of Cr5Te8 is -10.7 × 10-6 and 52.4 × 10-6 K-1 in the a and c directions, respectively. Cr5Te8 crystals oriented along the [101], [302], and [201] directions show near-zero thermal expansion and thus have wide application prospects. The abnormal thermal expansion of Cr5Te8 is apparently unrelated to its magnetic order but may be related to the Cr vacancies in the crystal lattice.

Key wordsneutron powder diffraction    negative thermal expansion    magnetic structure
收稿日期: 2024-01-12     
ZTFLH:  O482.54  
基金资助:国家重点研发计划项目(2020YFA0406002);国家自然科学基金面上项目(52071323)
通讯作者: 任卫军,wjren@imr.ac.cn,主要从事磁性材料研究
Corresponding author: REN Weijun, professor, Tel: (024)23971856, E-mail: wjren@imr.ac.cn
作者简介: 任卫军,男,1970年生,研究员,博士
图1  Cr5Te8室温粉末XRD谱的2个模型精修结果
图2  Cr5Te8室温NPD谱的2个模型精修结果
Diffraction patternSpace groupa / nmc / nmRp / %Rwp / %χ2
XRDP3¯m10.39000.59892.423.475.21
P3¯m10.78001.19792.703.936.70
NPDP3¯m10.39000.59861.131.421.07
P3¯m10.78011.19721.141.431.09
表1  2个模型X射线衍射和中子衍射的精修结果
图3  Cr5Te8不同温度NPD谱
图4  Cr5Te8实验磁衍射与4种磁结构模型
图5  Cr5Te8 3.3 K NPD谱及其精修结果,及Cr5Te8磁结构示意图
图6  Cr5Te8点阵参数a、c、a / c比和晶胞体积及Cr磁矩随温度的变化规律
图7  Cr5Te8 (101)、(201)、(302)晶面间距随温度的变化
1 Ipser H, Komarek K L, Klepp K O. Transition metal-chalcogen systems VIII: The Cr-Te phase diagram [J]. J. Less-Comon Met., 1983, 92: 265
2 Viswanathan R, Sai Baba M, Narasimhan T S L, et al. Homogeneity ranges and thermodynamic properties of the Te-rich phases in the Cr-Te system [J]. J. Alloys Compd., 1994, 206: 201
3 Li Y B, Zhang Y Q, Li W F, et al. Spin glass-like behavior and electrical transport properties of Cr7(Se1 - x Te x )8 compounds [J]. Phys. Rev., 2006, 73B: 212403
4 Akram M, Nazar F M. Magnetic properties of CrTe, Cr23Te24, Cr7Te8, Cr5Te6, and Cr3Te4 compounds [J]. J. Mater. Sci., 1983, 18: 423
5 Haraldsen H, Kowalski E. Magnetochemische untersuchungen. XVII. das magnetische verhalten der chalkogenide des zweiwertigen chroms [J]. Z. Anorg. Allg. Chem., 1935, 224: 329
6 Haraldsen H, Neuber A. Magnetochemische untersuchungen. XX-VII. Magnetische und röntgenographische untersuchungen am system chrom-tellur [J]. Z. Anorg. Allg. Chem., 1937, 234: 353
7 Tang B J, Wang X W, Han M J, et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect [J]. Nat. Electron., 2022, 5: 224
8 Huang Z L, Kockelmann W, Telling M, et al. A neutron diffraction study of structural and magnetic properties of monoclinic Cr5Te8 [J]. Solid State Sci., 2008, 10: 1099
9 Wang Y H, Yan J, Li J B, et al. Magnetic anisotropy and topological Hall effect in the trigonal chromium tellurides Cr5Te8 [J]. Phys. Rev., 2019, 100B: 024434
10 Luo X H, Ren W J, Zhang Z D. Magnetic properties and magnetocaloric effect of a trigonal Te-rich Cr5Te8 single crystal [J]. J. Magn. Magn. Mater., 2018, 445: 37
11 Akram M, Nazar F M. Magnetic anisotropy of Cr5Te8 single crystal [J]. J. Mater. Sci. Lett., 1983, 2: 441
12 Lukoschus K, Kraschinski S, Näther C, et al. Magnetic properties and low temperature X-ray studies of the weak ferromagnetic monoclinic and trigonal chromium tellurides Cr5Te8 [J]. J. Solid State Chem., 2004, 177: 951
13 Hatakeyama K, Kaneko T, Yoshida H, et al. Pressure effect on the Curie temperatures of Cr1 - δ Te compounds [J]. J. Magn. Magn. Mater., 1990, 90/91: 175
14 Fu B Y, Bao X J, Deng H S, et al. Redetermination the basic cell trigonal Cr5Te8 single crystal structure and its temperature dependence Raman spectra [J]. J. Solid State Chem., 2021, 300: 122222
15 Avdeev M, Hester J R. ECHIDNA: A decade of high‐resolution neu-tron powder diffraction at OPAL [J]. J. Appl. Cryst., 2018, 51: 1597
16 Studer A J, Hagen M E, Noakes T J. Wombat: The high-intensity powder diffractometer at the OPAL reactor [J]. Physica, 2006, 385-386B: 1013
17 Perez-Mato J M, Gallego S V, Tasci E S, et al. Symmetry-based computational tools for magnetic crystallography [J]. Annu. Rev. Mater. Res., 2015, 45: 217
18 Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction [J]. Physica, 1993, 192B: 55
19 Attfield J P. Mechanisms and materials for NTE [J]. Front. Chem., 2018, 6: 371
doi: 10.3389/fchem.2018.00371 pmid: 30186833
20 Evans J S O. Negative thermal expansion materials [J]. J. Chem. Soc. Dalton Trans., 1999, 19: 3317
21 Barrera G D, Bruno J A O, Barron T H K, et al. Negative thermal expansion [J]. J. Phys. Conden. Matter, 2005, 17: R217
22 Song Y Z, Shi N K, Deng S Q, et al. Negative thermal expansion in magnetic materials [J]. Prog. Mater. Sci., 2021, 121: 100835
23 Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522
doi: 10.1039/c4cs00461b pmid: 25864730
24 Xing Q F, Xing X R, Du L, et al. Hydrothermal synthesis of negative thermal expansion material ZrW2O8 [J]. Acta Metall. Sin., 2005, 41: 669
24 邢奇凤, 邢献然, 杜 凌 等. 水热法合成负热膨胀材料ZrW2O8 [J]. 金属学报, 2005, 41: 669
25 Li C, Liu K, Jiang D Q, et al. Diverse thermal expansion behaviors in ferromagnetic Cr1 - δ Te with NiAs-type, defective structures [J]. Inorg. Chem., 2022, 61: 14641
[1] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[2] 宋晓艳 孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报, 2011, 47(11): 1362-1371.
[3] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[4] 邢奇凤; 邢献然; 杜凌; 于然波; 陈骏; 邓金侠; 罗君 . 水热法合成负热膨胀材料ZrW2O8[J]. 金属学报, 2005, 41(6): 669-672 .