|
|
V添加对Ti2AlNb合金组织演变及硬度的影响 |
刘子儒1, 郭乾应1( ), 张虹雨2, 刘永长1( ) |
1 天津大学 材料科学与工程学院 高性能轧辊材料与复合成形全国重点实验室 天津 300354 2 之江实验室 新材料计算研究中心 杭州 311100 |
|
Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy |
LIU Ziru1, GUO Qianying1( ), ZHANG Hongyu2, LIU Yongchang1( ) |
1 State Key Laboratory of High Performance Roll Materials and Composite Forming, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China 2 New Materials Computing Research Center, Zhejiang Laboratory, Hangzhou 311100, China |
引用本文:
刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
Ziru LIU,
Qianying GUO,
Hongyu ZHANG,
Yongchang LIU.
Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy[J]. Acta Metall Sin, 2025, 61(6): 848-856.
1 |
Mikhaylovskaya A V, Mosleh A O, Mestre-Rinn P, et al. High-strength titanium-based alloy for low-temperature superplastic forming [J]. Metall. Mater. Trans., 2021, 52A: 293
|
2 |
Zhang Y, Lee Y J, Chang S, et al. Microstructural modulation of TiAl alloys for controlling ultra-precision machinability [J]. Int. J. Mach. Tools Manuf., 2022, 174: 103851
|
3 |
Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
|
4 |
Huang Y, Liu Y C, Li C, et al. Microstructure evolution and phase transformations in Ti-22Al-25Nb alloys tailored by super-transus solution treatment [J]. Vacuum, 2019, 161: 209
|
5 |
Zhang Y R, Cai Q, Liu Y C. Formation of diverse B2 + O structure and hardness of Mo-modified Ti-22Al-25Nb alloys upon cooling [J]. Vacuum, 2019, 165: 199
|
6 |
Zhang H Y, Zhang Y R, Liang H Y, et al. Effect of the primary O phase on thermal deformation behavior of a Ti2AlNb-based alloy [J]. J. Alloys Compd., 2020, 846: 156458
|
7 |
Zheng Y P, Zeng W D, Li D, et al. Quasi cleavage fracture of the bimodal size lamellar O phase microstructure of a Ti2AlNb-based alloy [J]. J. Alloys Compd., 2019, 799: 267
|
8 |
Feng A H, Chen Q, Wang J, et al. Thermal stability of microstructures in low-density Ti2AlNb-based alloy hot rolled plate [J]. Acta Metall. Sin., 2023, 59: 777
|
8 |
冯艾寒, 陈 强, 王 剑 等. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性 [J]. 金属学报, 2023, 59: 777
doi: 10.11900/0412.1961.2021.00315
|
9 |
Valkov S, Bezdushnyi R, Petrov P. Synthesis, structure and mechanical properties of Ti-Al-Nb coatings formed by electron beam additive technique [J]. Vacuum, 2018, 156: 140
|
10 |
Yang R, Hao Y L, Obbard E G, et al. Orthorhombic phase transformations in titanium alloys and their applications [J]. Acta Metall. Sin., 2010, 46: 1443
doi: 10.3724/SP.J.1037.2010.00483
|
10 |
杨 锐, 郝玉琳, Obbard E G 等. 钛合金中的正交相变及其应用 [J]. 金属学报, 2010, 46: 1443
|
11 |
Dey S R, Roy S, Suwas S, et al. Annealing response of the intermetallic alloy Ti-22Al-25Nb [J]. Intermetallics, 2010, 18: 1122
|
12 |
Wang W, Zeng W D, Li D, et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition [J]. Mater. Sci. Eng., 2016, A662: 120
|
13 |
Zhang H Y, Li C, Ma Z Q, et al. Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1191
|
14 |
Niu H Z, Chen Y F, Zhang D L, et al. Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization [J]. Mater. Des., 2016, 89: 823
|
15 |
Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
|
16 |
Goyal K, Sardana N. Mechanical properties of the Ti2AlNb intermetallic: A review [J]. Trans. Indian Inst. Met., 2021, 74: 1839
|
17 |
Zheng Y P, Zeng W D, Li D, et al. Orthorhombic precipitate variant selection in a Ti2AlNb based alloy [J]. Mater. Des., 2018, 158: 46
|
18 |
Bu Z Q, Zhang Y G, Yang L, et al. Effect of cooling rate on phase transformation in Ti2AlNb alloy [J]. J. Alloys Compd., 2022, 893: 162364
|
19 |
Liu X Z, Wang J, Li Y M, et al. Densification mechanism of Ti-Al-Nb alloys pressurelessly sintered from Al-Nb master alloy powder for cost-effective manufacturing [J]. J. Alloys Compd., 2023, 936: 168307
|
20 |
Raynova S, Yang F, Bolzoni L. Mechanical behaviour of induction sintered blended elemental powder metallurgy Ti alloys [J]. Mater. Sci. Eng., 2021, A799: 140157
|
21 |
Fang Z Z, Paramore J D, Sun P, et al. Powder metallurgy of titanium—Past, present, and future [J]. Int. Mater. Rev., 2018, 63: 407
|
22 |
Yang J L, Wang G F, Jiao X Y, et al. High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy [J]. Mater. Charact., 2018, 137: 170
|
23 |
Sim K H, Wang G F, Kim T J, et al. Fabrication of a high strength and ductility Ti-22Al-25Nb alloy from high energy ball-milled powder by spark plasma sintering [J]. J. Alloys Compd., 2018, 741: 1112
|
24 |
Sim K H, Wang G F, Son R C, et al. Influence of mechanical alloying on the microstructure and mechanical properties of powder metallurgy Ti2AlNb-based alloy [J]. Powder Technol., 2017, 317: 133
|
25 |
Emura S, Tsuzaki K, Tsuchiya K. Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy [J]. Mater. Sci. Eng., 2010, A528: 355
|
26 |
Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J]. Mater. Sci. Eng., 2002, A329-331: 492
|
27 |
Cheng F, Wang H M, Yang J W, et al. Deformation kinking in duplex titanium alloy with widmannstatten laths under high strain rates [J]. Mater. Lett., 2023, 333: 133591
|
28 |
Liu Z R. Ageing precipitation behavior and mechanical properties of Ti-22Al-25Nb-1Valloys by powder metallurgy [D]. Tianjin: Tianjin University, 2023
|
28 |
刘子儒. 粉末冶金Ti-22Al-25Nb-1V合金的时效析出行为及其力学性能 [D]. 天津: 天津大学, 2023
|
29 |
Sadi F A, Servant C. On the B2 → O phase transformation in Ti-Al-Nb alloys [J]. Mater. Sci. Eng., 2003, A346: 19
|
30 |
Zong Y Y, Wang J W, Shao B, et al. Mechanism and morphology evolution of the O phase transformation in Ti-22Al-25Nb alloy [J]. Mater. Sci. Technol., 2021, 89: 97
|
31 |
Zhang Y F, Tian S W, Jiang H T, et al. Research on hot deformation behavior of Mo‐containing Ti2AlNb‐based alloy [J]. Adv. Eng. Mater., 2021, 23: 2100449
|
32 |
Shao B, Shan D B, Guo B, et al. Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti-22Al-25Nb alloy at room temperature [J]. Int. J. Plast., 2019, 113: 18
|
33 |
He Y S, Hu R, Luo W Z, et al. Microstructural evolution and creep deformation behavior of novel Ti-22Al-25Nb-1Mo-1V-1Zr-0.2Si (at.%) orthorhombic alloy [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 313
|
34 |
Fu Y Q, Cui Z S. Effects of plastic deformation and aging treatment on phase precipitation in Ti2AlNb Alloy [J]. J. Mater. Eng. Perform., 2022, 31: 2633
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|