Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 848-856    DOI: 10.11900/0412.1961.2023.00155
  研究论文 本期目录 | 过刊浏览 |
V添加对Ti2AlNb合金组织演变及硬度的影响
刘子儒1, 郭乾应1(), 张虹雨2, 刘永长1()
1 天津大学 材料科学与工程学院 高性能轧辊材料与复合成形全国重点实验室 天津 300354
2 之江实验室 新材料计算研究中心 杭州 311100
Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy
LIU Ziru1, GUO Qianying1(), ZHANG Hongyu2, LIU Yongchang1()
1 State Key Laboratory of High Performance Roll Materials and Composite Forming, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
2 New Materials Computing Research Center, Zhejiang Laboratory, Hangzhou 311100, China
引用本文:

刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
Ziru LIU, Qianying GUO, Hongyu ZHANG, Yongchang LIU. Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy[J]. Acta Metall Sin, 2025, 61(6): 848-856.

全文: PDF(3172 KB)   HTML
摘要: 

Ti-Al基合金是一种具有较高强度/密度比,但成型性能较差的航空航天材料。为进一步优化该类合金,使其适用于粉末冶金的成分设计,本工作采用预合金粉末放电等离子烧结工艺制备了名义成分为Ti-22Al-25Nb和Ti-22Al-25Nb-1V的Ti2AlNb合金,通过XRD、SEM、TEM、EBSD和Vickers硬度测试等方法,系统研究了V的添加对Ti2AlNb合金的微观组织及硬度的影响。结果表明,相较于未掺V合金,掺V合金的显微硬度明显提高,并在时效温度为850 ℃时达到最高值503 HV。硬度提高主要是由于V的添加使得B2相晶粒细化,O/α2相宽度减小以及晶格畸变引起的位错缠结所导致的。其中V原子部分取代了B2相中的Nb原子,导致B2相晶格常数减小,进而诱发晶格畸变。另外V和Nb原子在B2相中的偏析会诱导形成“弯曲”组织B2 (富Nb和V) + α2 (贫Nb和V),从而进一步提高掺V合金的硬度。

关键词 Ti2AlNb合金微观组织时效弯曲组织    
Abstract

Ti2AlNb-based alloys, as emerging lightweight high-temperature structural materials, have shown great potential for aerospace applications owing to their outstanding creep resistance, strong plasticity, and impressive high-temperature oxidation resistance. However, the material has yet to see widespread use owing to its poor formability and processability. Compared to traditional melting and forging methods, powder metallurgy has proven to be an effective method for preparing this alloy with a required shape, thereby circumventing phase transformation during hot working. The properties of Ti2AlNb-based alloy can be enhanced by adding stabilized elements to the B2 or α2 phase. Among these metallic elements, V has been demonstrated to effectively increase the ductility and high-temperature strength of Ti2AlNb-based alloys. However, the mechanism of the V addition's effect on the microstructure and properties of Ti2AlNb-based alloys during aging treatment has not been systematically clarified. Therefore, investigating the influence of powder sintering and post-heat treatment on the microstructure and properties of Ti-22Al-25Nb-1V alloys is crucial for accelerating their industrialization process. This investigation forms the basis of this work. A detailed study on the role of V in the microstructure and deformation responses of the Ti2AlNb alloy was performed. This involved preparing V-added and V-free Ti-22Al-25Nb alloys via spark plasma sintering. Then, the sintered alloys were solution treated at 1300 oC for 4 h and subsequently aged at temperatures from 800 oC to 1050 oC for 2 h for microstructure modification. The detailed microstructure of the alloys was analyzed using X-ray diffraction and electron microscopy. The results revealed that by adding V, the volume fraction of the residual α2 phase improves. The microhardness of the V-doped alloys is significantly enhanced compared to the undoped alloys and reached a maximum value of 503 HV at an aging temperature of 850 oC. This α2 phase pins the grain boundary during heat treatment, resulting in an alloy with a refined grain size. Additionally, V additions can inhibit the B2 + α2 → O transition, promoting a finer O/α2 phase precipitate and higher hardness. Furthermore, microstructural analysis proved that the segregation of V and Nb in the B2 phase will cause the “curved” structure, including Nb- and V-rich B2 and Nb- and V-lean α2 phases. The partial replacement of Nb by V reduced the lattice parameter in the B2 phase, which further improves the hardness of this alloy.

Key wordsTi2AlNb alloy    microstructure    aging    curved structure
收稿日期: 2023-04-06     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52034004)
通讯作者: 郭乾应,guoqy@tju.edu.cn,主要从事高温合金增材制造研究;
刘永长,ycliu@tju.edu.cn,主要从事高温金属结构材料研究
Corresponding author: GUO Qianying, professor, Tel: (022)85356432, E-mail: guoqy@tju.edu.cn;
LIU Yongchang, professor, Tel: (022)85356410, E-mail: ycliu@tju.edu.cn
作者简介: 刘子儒,男,1998年生,硕士
SampleAlNbVTi
Ti-22Al-25Nb22.1125.21-Bal.
Ti-22Al-25Nb-1V22.0625.230.95Bal.
表1  Ti-22Al-25Nb和Ti-22Al-25Nb-1V烧结试样的真实化学成分 (atomic fraction / %)
图1  Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金1300 ℃固溶后的XRD谱
图2  Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金在不同温度时效处理后的XRD谱
图3  Ti-22Al-25Nb合金经过不同温度时效处理后的SEM像
图4  Ti-22Al-25Nb-1V合金经过不同温度时效处理的SEM像
图5  Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金Vickers硬度随时效温度的变化
Temperature / oCAlloyB2 phaseO phaseα2 phase
800Ti-22Al-25Nb18.3381.67-
Ti-22Al-25Nb-1V21.3373.684.99
850Ti-22Al-25Nb27.9372.07-
Ti-22Al-25Nb-1V38.8051.229.98
900Ti-22Al-25Nb42.0357.97-
Ti-22Al-25Nb-1V49.6231.0819.30
950Ti-22Al-25Nb71.8114.7113.48
Ti-22Al-25Nb-1V74.48-25.52
1000Ti-22Al-25Nb81.53-18.47
Ti-22Al-25Nb-1V85.03-14.97
1050Ti-22Al-25Nb84.04-15.96
Ti-22Al-25Nb-1V80.91-19.09
表2  1300 ℃固溶处理和不同温度时效后Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金中B2、O和α2相的体积分数 (%)
图6  Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金B2相晶粒尺寸随时效温度的变化
图7  Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金析出相尺寸随时效温度的变化
图8  Ti-22Al-25Nb-1V合金在900 ℃时效后的相分布图
图9  Ti-22Al-25Nb-1V合金在900 ℃时效后的SEM背散射电子(BSE)像以及相应的EDS线扫描结果
图10  Ti-22Al-25Nb和Ti-22Al-25Nb-1V合金在850 ℃时效后的TEM像
图11  Ti-22Al-25Nb合金中不连续析出组织的TEM分析
图12  Ti-22Al-25Nb-1V合金中弯曲组织的TEM分析
Temperature / oCAlloya / nmd(110) / nmd(200) / nmd(211) / nm
800Ti-22Al-25Nb0.325180.229940.162590.13275
Ti-22Al-25Nb-1V0.324550.229490.162270.13250
850Ti-22Al-25Nb0.325120.229890.162560.13273
Ti-22Al-25Nb-1V0.324550.229490.162270.13250
900Ti-22Al-25Nb0.325060.229850.162530.13271
Ti-22Al-25Nb-1V0.323980.229090.161990.13226
950Ti-22Al-25Nb0.324280.229300.162140.13239
Ti-22Al-25Nb-1V0.323680.228880.161840.13214
1000Ti-22Al-25Nb0.324130.229190.162060.13232
Ti-22Al-25Nb-1V0.323650.228860.161820.13213
1050Ti-22Al-25Nb0.324460.229430.162230.13246
Ti-22Al-25Nb-1V0.323980.229090.161990.13226
表3  不同时效处理后合金中B2相晶格常数与晶面间距
1 Mikhaylovskaya A V, Mosleh A O, Mestre-Rinn P, et al. High-strength titanium-based alloy for low-temperature superplastic forming [J]. Metall. Mater. Trans., 2021, 52A: 293
2 Zhang Y, Lee Y J, Chang S, et al. Microstructural modulation of TiAl alloys for controlling ultra-precision machinability [J]. Int. J. Mach. Tools Manuf., 2022, 174: 103851
3 Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
4 Huang Y, Liu Y C, Li C, et al. Microstructure evolution and phase transformations in Ti-22Al-25Nb alloys tailored by super-transus solution treatment [J]. Vacuum, 2019, 161: 209
5 Zhang Y R, Cai Q, Liu Y C. Formation of diverse B2 + O structure and hardness of Mo-modified Ti-22Al-25Nb alloys upon cooling [J]. Vacuum, 2019, 165: 199
6 Zhang H Y, Zhang Y R, Liang H Y, et al. Effect of the primary O phase on thermal deformation behavior of a Ti2AlNb-based alloy [J]. J. Alloys Compd., 2020, 846: 156458
7 Zheng Y P, Zeng W D, Li D, et al. Quasi cleavage fracture of the bimodal size lamellar O phase microstructure of a Ti2AlNb-based alloy [J]. J. Alloys Compd., 2019, 799: 267
8 Feng A H, Chen Q, Wang J, et al. Thermal stability of microstructures in low-density Ti2AlNb-based alloy hot rolled plate [J]. Acta Metall. Sin., 2023, 59: 777
8 冯艾寒, 陈 强, 王 剑 等. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性 [J]. 金属学报, 2023, 59: 777
doi: 10.11900/0412.1961.2021.00315
9 Valkov S, Bezdushnyi R, Petrov P. Synthesis, structure and mechanical properties of Ti-Al-Nb coatings formed by electron beam additive technique [J]. Vacuum, 2018, 156: 140
10 Yang R, Hao Y L, Obbard E G, et al. Orthorhombic phase transformations in titanium alloys and their applications [J]. Acta Metall. Sin., 2010, 46: 1443
doi: 10.3724/SP.J.1037.2010.00483
10 杨 锐, 郝玉琳, Obbard E G 等. 钛合金中的正交相变及其应用 [J]. 金属学报, 2010, 46: 1443
11 Dey S R, Roy S, Suwas S, et al. Annealing response of the intermetallic alloy Ti-22Al-25Nb [J]. Intermetallics, 2010, 18: 1122
12 Wang W, Zeng W D, Li D, et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition [J]. Mater. Sci. Eng., 2016, A662: 120
13 Zhang H Y, Li C, Ma Z Q, et al. Morphology and quantitative analysis of O phase during heat treatment of hot-deformed Ti2AlNb-based alloy [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1191
14 Niu H Z, Chen Y F, Zhang D L, et al. Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization [J]. Mater. Des., 2016, 89: 823
15 Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
16 Goyal K, Sardana N. Mechanical properties of the Ti2AlNb intermetallic: A review [J]. Trans. Indian Inst. Met., 2021, 74: 1839
17 Zheng Y P, Zeng W D, Li D, et al. Orthorhombic precipitate variant selection in a Ti2AlNb based alloy [J]. Mater. Des., 2018, 158: 46
18 Bu Z Q, Zhang Y G, Yang L, et al. Effect of cooling rate on phase transformation in Ti2AlNb alloy [J]. J. Alloys Compd., 2022, 893: 162364
19 Liu X Z, Wang J, Li Y M, et al. Densification mechanism of Ti-Al-Nb alloys pressurelessly sintered from Al-Nb master alloy powder for cost-effective manufacturing [J]. J. Alloys Compd., 2023, 936: 168307
20 Raynova S, Yang F, Bolzoni L. Mechanical behaviour of induction sintered blended elemental powder metallurgy Ti alloys [J]. Mater. Sci. Eng., 2021, A799: 140157
21 Fang Z Z, Paramore J D, Sun P, et al. Powder metallurgy of titanium—Past, present, and future [J]. Int. Mater. Rev., 2018, 63: 407
22 Yang J L, Wang G F, Jiao X Y, et al. High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy [J]. Mater. Charact., 2018, 137: 170
23 Sim K H, Wang G F, Kim T J, et al. Fabrication of a high strength and ductility Ti-22Al-25Nb alloy from high energy ball-milled powder by spark plasma sintering [J]. J. Alloys Compd., 2018, 741: 1112
24 Sim K H, Wang G F, Son R C, et al. Influence of mechanical alloying on the microstructure and mechanical properties of powder metallurgy Ti2AlNb-based alloy [J]. Powder Technol., 2017, 317: 133
25 Emura S, Tsuzaki K, Tsuchiya K. Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy [J]. Mater. Sci. Eng., 2010, A528: 355
26 Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys [J]. Mater. Sci. Eng., 2002, A329-331: 492
27 Cheng F, Wang H M, Yang J W, et al. Deformation kinking in duplex titanium alloy with widmannstatten laths under high strain rates [J]. Mater. Lett., 2023, 333: 133591
28 Liu Z R. Ageing precipitation behavior and mechanical properties of Ti-22Al-25Nb-1Valloys by powder metallurgy [D]. Tianjin: Tianjin University, 2023
28 刘子儒. 粉末冶金Ti-22Al-25Nb-1V合金的时效析出行为及其力学性能 [D]. 天津: 天津大学, 2023
29 Sadi F A, Servant C. On the B2 → O phase transformation in Ti-Al-Nb alloys [J]. Mater. Sci. Eng., 2003, A346: 19
30 Zong Y Y, Wang J W, Shao B, et al. Mechanism and morphology evolution of the O phase transformation in Ti-22Al-25Nb alloy [J]. Mater. Sci. Technol., 2021, 89: 97
31 Zhang Y F, Tian S W, Jiang H T, et al. Research on hot deformation behavior of Mo‐containing Ti2AlNb‐based alloy [J]. Adv. Eng. Mater., 2021, 23: 2100449
32 Shao B, Shan D B, Guo B, et al. Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti-22Al-25Nb alloy at room temperature [J]. Int. J. Plast., 2019, 113: 18
33 He Y S, Hu R, Luo W Z, et al. Microstructural evolution and creep deformation behavior of novel Ti-22Al-25Nb-1Mo-1V-1Zr-0.2Si (at.%) orthorhombic alloy [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 313
34 Fu Y Q, Cui Z S. Effects of plastic deformation and aging treatment on phase precipitation in Ti2AlNb Alloy [J]. J. Mater. Eng. Perform., 2022, 31: 2633
[1] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[2] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[3] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[4] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[5] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[6] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[7] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[8] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[9] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[10] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[11] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[12] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[13] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[14] 张冉, 朱士泽, 刘振宇, 柯于斌, 王东, 肖伯律, 马宗义. 时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响[J]. 金属学报, 2024, 60(8): 1043-1054.
[15] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.