Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1193-1202    DOI: 10.11900/0412.1961.2023.00422
  研究论文 本期目录 | 过刊浏览 |
316L激光粉末床熔覆IN718偏析带形成过程的模拟
沈盟凯1,2,3, 董太宁4, 葛鸿浩1,2,3(), 石新升1,2,3, 张群莉1,2,3, 刘云峰2,3, 姚建华1,2,3
1.浙江工业大学 机械工程学院 杭州 310014
2.浙江工业大学 特种装备制造与先进加工技术教育部/浙江省重点实验室 杭州 310014
3.浙江工业大学 激光先进制造研究院 杭州 310014
4.杭州汽轮动力集团股份有限公司 杭州 310022
Simulation of the Formation Mechanism of Segregation Bands During IN718 Cladding on 316L Using Laser Powder Bed Fusion
SHEN Mengkai1,2,3, DONG Taining4, GE Honghao1,2,3(), SHI Xinsheng1,2,3, ZHANG Qunli1,2,3, LIU Yunfeng2,3, YAO Jianhua1,2,3
1.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2.Ministry of Education/Zhejiang Provincial Key Laboratory of Special Equipment Manufacturing and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou 310014, China
3.Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
4.Hangzhou Steam Turbine Power Group Co. Ltd., Hangzhou 310022, China
引用本文:

沈盟凯, 董太宁, 葛鸿浩, 石新升, 张群莉, 刘云峰, 姚建华. 316L激光粉末床熔覆IN718偏析带形成过程的模拟[J]. 金属学报, 2025, 61(8): 1193-1202.
Mengkai SHEN, Taining DONG, Honghao GE, Xinsheng SHI, Qunli ZHANG, Yunfeng LIU, Jianhua YAO. Simulation of the Formation Mechanism of Segregation Bands During IN718 Cladding on 316L Using Laser Powder Bed Fusion[J]. Acta Metall Sin, 2025, 61(8): 1193-1202.

全文: PDF(2648 KB)   HTML
摘要: 

异种金属在激光熔覆、焊接等热加工成型过程中易出现偏析带,偏析带常与凝固裂纹伴生,直接影响加工成型后的力学性能。为了研究异种金属材料在冶金结合时偏析带形成机制及其演化规律,本工作将元胞自动机方法和Eulerian多相流算法相结合,建立了在316L不锈钢上激光熔覆IN718合金的二维熔化凝固模型,系统研究了激光熔覆过程中的温度场、熔池形貌、熔体流动以及元素分布的演化过程。通过对比熔池几何尺寸和晶粒取向验证了模型的合理性,对比x方向和y方向上的Fe元素含量分布来验证模型的可靠性。模拟结果表明,316L不锈钢基板上激光熔覆IN718合金冶金结合过程中出现了Fe、Ni元素富集、贫瘠交替分布的偏析带,与实验结果吻合较好。通过分析熔池中Fe元素的分布、熔池形貌和熔体流态的演化过程,该偏析带是熔池凝固过程中流体流动与熔池形貌变化不协调的结果。

关键词 偏析带激光熔覆元胞自动机元素分布    
Abstract

During laser cladding, welding, and other hot forming processes, dissimilar metals can form segregation bands. These bands often lead to solidification cracks that can directly affect the mechanical properties of the processed and formed materials. To study the formation mechanism and evolution of segregation bands during metallurgical bonding of dissimilar metal materials, a two-dimensional melting and solidification model for laser cladding of IN718 on 316L stainless steel was used. This model was established using the cellular automata method and Eulerian multiphase flow algorithm. The evolution of the temperature field, molten pool morphology, melt flow, and element distributions during laser cladding was comprehensively analyzed. The rationality of the model was confirmed by comparing the melt pool geometry and grain orientation. Additionally, the reliability of the model was confirmed by comparing the distribution of Fe element content in the x- and y-directions. The simulation results reveal that during the metallurgical bonding process of laser cladding IN718 alloy on the 316L stainless steel substrate, distinct segregation zones are observed, which are characterized by the enrichment of Fe and Ni elements and an unideal alternating distribution pattern. This finding is in high consistency with the experimental results. The Marangoni force drives more Fe elements from the bottom of the melt pool (substrate) to the rear end of the melt pool, increasing the temperature of the liquidus at that location. This solidification promotion at the rear end of the melt pool causes actual solidification liquidus temperature(Ta) to be biased toward substrate liquidus temperature(Tb), resulting in the formation of a region with a high concentration of Fe elements. The rear end of the melt pool takes on a “bulging” shape, increasing the melt flow rate within the pool. This increase rolls more Fe elements from the front end of the melt pool (powder) to the rear end of the pool. Consequently, the liquidus temperature at the rear end of the melt pool decreases, biasing Ta toward the liquidus temperature of the powder(Tp). This process hinders solidification at the rear end of the melt pool, resulting in the formation of a region with a reduced concentration of Fe elements. The rear end of the melt pool flattens gradually, decreasing the melt flow rate and drawing more elements from the front to the rear end. This change results in the formation of a segregation zone with an alternating distribution of high and low Fe element content, which is consistent with the experimental results. Through the analysis of the distribution of Fe elements in the melt pool, the morphology of the melt pool and the evolution of the melt flow state, it is evident that this segregation zone arises from the mismatch between fluid flow dynamics and the morphological changes of the melt pool during the solidification process. The rate at which the solid-liquid interface moves can be calculated by finding the difference in the solute concentration between the interface neighboring cells. Fluctuations in the molten pool flow cause the morphology of the rear end of the molten pool to constantly change, resulting in varying concentrations of Fe element after solidification. Therefore, increasing the homogeneity of element mixing in the molten pool can reduce the degree of segregation. During the experimental process, appropriate increase in the laser power and scanning rate reduction can improve the quality of the cladding layer.

Key wordssegregation zone    laser cladding    cellular automata    element distribution
收稿日期: 2023-10-18     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目(52035014);浙江省自然科学基金项目(LD22E050013);浙江省“领雁”研发攻关计划项目
通讯作者: 葛鸿浩,gehh@zjut.edu.cn,主要从事材料加工过程中传热与传质研究
Corresponding author: GE Honghao, associate professor, Tel: (0571)85290864, E-mail: gehh@zjut.edu.cn
作者简介: 沈盟凯,男,1993年生,硕士生
图1  激光粉末床熔覆示意图
图2  计算域的边界条件和网格
ParameterSymbolValueUnit
Melting point of pure FeTf1805.15K
Reference densities of liquid and solidρl, ρs8000kg·m-3
Specific heatcp500J·kg-1·K-1
Thermal conductivity of solidkqs19.2W·m-1·K-1
Thermal conductivity of liquidkql209.2W·m-1·K-1
Latent heatΔhf250000J·kg-1
Viscosityμl0.0042kg·m-1·s-1
Volume heat-transfer coefficientH*1 × 109W·m-2·K-1
Temperature coefficient of surface tensionγ / ∂T-4.3 × 10-4N·m-1·K-1
Maximum nucleation densitynmax1 × 109m-3
Average nucleation undercoolingΔTn15K
Nucleation undercooling deviationΔTσ5K
表1  模型中的热物性参数[23]
图3  激光粉末床熔覆工作平台示意图
MaterialFeNiMnAlTiNbSiCrMoC
316LBal.10.01.55---0.5516.52.080.020
IN71818.1Bal.0.040.540.974.920.2019.22.080.045
表2  316L基板和IN718粉末的化学成分 (mass fraction / %)
Process parameterSymbolValueUnit
Laser powerP900W
Scanning speedv8mm·s-1
Powder thicknessHp0.2mm
Laser beam radiusR1mm
Laser defocusing amountLh15mm
表3  激光熔覆工艺参数
图4  时间t = 0.93 s时熔池形貌的OM像和模拟结果
图5  t = 1.27 s时模拟的晶粒生长过程
图6  不同时刻的温度场分布云图
图7  不同时刻的流场分布矢量图
图8  t = 1.17 s时Fe元素的分布云图
图9  沿激光扫描方向中间截面的OM像和元素的EDS面扫描
图10  x方向和y方向上的Fe元素含量的模拟(图8)与实验(图9a)结果对比图
图11  不同时刻Fe元素的分布
图12  偏析带形成的示意图
[1] Chen N N, Khan H A, Wan Z X, et al. Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625 [J]. Addit. Manuf., 2020, 32: 101037
[2] Barr C, Sun S D, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels [J]. Surf. Coat. Technol., 2018, 340: 126
[3] Soysal T, Kou S, Tat D, et al. Macrosegregation in dissimilar-metal fusion welding [J]. Acta Mater., 2016, 110: 149
[4] Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad Aermet100 steel coating on 300M steel substrate [J]. Surf. Coat. Technol., 2017, 325: 352
[5] Gan Z T, Liu H, Li S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron [J]. Int. J. Heat Mass Transf., 2017, 111: 709
[6] Ge H H, Xu H Z, Wang J F, et al. Investigation on composition distribution of dissimilar laser cladding process using a three-phase model [J]. Int. J. Heat Mass Transf., 2021, 170: 120975
[7] Li Z Y, Yu G, He X L, et al. Fluid flow and solute dilution in laser linear butt joining of 304SS and Ni [J]. Int. J. Heat Mass Transf., 2020, 161: 120233
[8] Wolff S J, Gan Z T, Lin S, et al. Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel [J]. Addit. Manuf., 2019, 27: 540
[9] Ren N, Li J, Panwisawas C, et al. Thermal-solutal-fluid flow of channel segregation during directional solidification of single-crystal nickel-based superalloys [J]. Acta Mater., 2021, 206: 116620
[10] Chen R, Xu Q Y, Liu B C. A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth [J]. J. Mater. Sci. Technol., 2014, 30: 1311
doi: 10.1016/j.jmst.2014.06.006
[11] Wang W L, Ji C, Luo S, et al. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton [J]. Metall. Mater. Trans., 2018, 49B: 200
[12] Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J]. Acta Mater., 1999, 47: 4253
[13] Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts [J]. Metall. Mater. Trans., 2004, 35A: 2471
[14] Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J]. Acta Mater., 2007, 55: 1741
[15] Zhang H, Xu Q Y, Shi Z X, et al. Numerical simulation of dendrite grain growth of DD6 superalloy during directional solidification process [J]. Acta Metall. Sin., 2014, 50: 345
doi: 10.3724/SP.J.1037.2013.00496
[15] 张 航, 许庆彦, 史振学 等. DD6高温合金定向凝固枝晶生长的数值模拟研究 [J]. 金属学报, 2014, 50: 345
[16] Wang W L, Wang Z H, Yin S W, et al. Numerical simulation of solute undercooling influenced columnar to equiaxed transition of Fe-C alloy with cellular automaton [J]. Comput. Mater. Sci., 2019, 167: 52
[17] Chen R, Xu Q Y, Liu B C. Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys [J]. Comput. Mater. Sci., 2015, 105: 90
[18] Li J, Wu M, Hao J, et al. Simulation of channel segregation using a two-phase columnar solidification model—part i: Model description and verification [J]. Comput. Mater. Sci., 2012, 55: 407
[19] Xu H Z, Ge H H, Wang J F, et al. Effects of process parameters upon chromium element distribution in laser-cladded 316L stainless steel [J]. Chin. J. Lasers, 2020, 47(12): 1202004
[19] 徐瀚宗, 葛鸿浩, 王杰锋 等. 工艺参数对316L不锈钢激光熔覆层中Cr元素分布的影响 [J]. 中国激光, 2020, 47(12): 1202004
[20] Ren F L, Ge H H, Fang H, et al. Simulation of the dendrite growth during directional solidification under steady magnetic field using three-dimensional cellular automaton method coupled with eulerian multiphase [J]. Int. J. Heat Mass Transf., 2024, 218: 124809
[21] Luo S, Zhu M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method [J]. Comput. Mater. Sci., 2013, 71: 10
[22] Zhu M F, Tang Q Y, Zhang Q Y, et al. Cellular automaton modeling of microstructure evolution during alloy solidification [J]. Acta Metall. Sin., 2016, 52: 1297
[22] 朱鸣芳, 汤倩玉, 张庆宇 等. 合金凝固过程中显微组织演化的元胞自动机模拟 [J]. 金属学报, 2016, 52: 1297
doi: 10.11900/0412.1961.2016.00361
[23] Tan W D, Wen S Y, Bailey N, et al. Multiscale modeling of transport phenomena and dendritic growth in laser cladding processes [J]. Metall. Mater. Trans., 2011, 42B: 1306
[24] Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J]. Nat. Commun., 2018, 9: 1355
doi: 10.1038/s41467-018-03734-7 pmid: 29636443
[25] Zhao C, Fezzaa K, Cunningham R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction [J]. Sci. Rep., 2017, 7: 3602
doi: 10.1038/s41598-017-03761-2 pmid: 28620232
[26] Bidare P, Bitharas I, Ward R M, et al. Fluid and particle dynamics in laser powder bed fusion [J]. Acta Mater., 2018, 142: 107
[27] Li X X, Tan W D. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing [J]. Comput. Mater. Sci., 2018, 153: 159
[28] Wei H L, Knapp G L, Mukherjee T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718 [J]. Addit. Manuf., 2019, 25: 448
doi: 10.1016/j.addma.2018.11.028
[29] Aucott L, Dong H B, Mirihanage W, et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals [J]. Nat. Commun., 2018, 9: 5414
doi: 10.1038/s41467-018-07900-9 pmid: 30575762
[1] 汤思璠, 魏晶晶, 岳怡心, 李鹏宇, 姚曼, 王旭东. 六重对称合金枝晶生长场变量扩散元胞自动机模型[J]. 金属学报, 2025, 61(6): 941-952.
[2] 夏兴川, 张恩宽, 丁俭, 王玉江, 刘永长. 激光熔覆难熔高熵合金涂层研究进展[J]. 金属学报, 2025, 61(1): 59-76.
[3] 徐一斐, 张楠, 许培鑫, 杜博睿, 史华, 王淼辉. 超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理[J]. 金属学报, 2024, 60(12): 1721-1730.
[4] 陈学双, 黄兴民, 刘俊杰, 吕超, 张娟. 一种含富锰偏析带的热轧临界退火中锰钢的组织调控及强化机制[J]. 金属学报, 2023, 59(11): 1448-1456.
[5] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[6] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[7] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[8] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[9] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[10] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[11] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[12] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[13] 王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
[14] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[15] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.