Please wait a minute...
金属学报  2018, Vol. 54 Issue (2): 193-203    DOI: 10.11900/0412.1961.2017.00428
  本期目录 | 过刊浏览 |
合金凝固组织微观模拟研究进展与应用
王同敏1,2, 魏晶晶1,2, 王旭东1,2(), 姚曼1,2
1 大连理工大学材料科学与工程学院 大连 116024
2 大连理工大学辽宁省凝固控制与数字化制备技术重点实验室 大连 116024
Progress and Application of Microstructure Simulation of Alloy Solidification
Tongmin WANG1,2, Jingjing WEI1,2, Xudong WANG1,2(), Man YAO1,2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China
引用本文:

王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. Acta Metall Sin, 2018, 54(2): 193-203.

全文: PDF(3126 KB)   HTML
摘要: 

凝固组织是连接合金成分与性能的桥梁,准确认识和把握合金凝固微观组织的形成机理、主导因素与控制途径,对凝固组织与性能的优化具有重要意义。近年来凝固过程数值模拟取得了显著进展,元胞自动机(cellular automaton,CA)在合金凝固组织模拟研究方面展现出极大潜力。本文阐述了凝固组织计算中常见的形核模型与特点,对CA法枝晶生长模拟中的关键环节进行了分析和探讨,在此基础上,简要概括了铸造、定向凝固等相关领域凝固组织宏观-微观耦合模型的开发和应用现状,并对凝固组织模拟的发展趋势进行了展望。

关键词 合金凝固形核枝晶生长元胞自动机组织模拟    
Abstract

Solidification structures are the interaction links between the alloy components and their mechanical properties. Scientifically comprehending about the formation mechanisms, dominant factors and control methods in alloy solidification has a significant effect on the structure control and optimization. Dendritic structure is the most frequently observed solidification microstructure of alloys and controlled by heat, solute, melt flow, capillary and many other factors. Modelling and simulating can accurately quantify various phenomena and evolution rules in the process of solidification, thus play an increasingly important role in the design, preparation, processing and performance optimization of alloy materials. Over the past two decades, remarkable progress has been made and various models have been proposed in microstructure simulation during alloy solidification process, such as deterministic method, phase field (PF), Monte Carlo (MC) and cellular automaton (CA). With the advantages of clear physical meaning, easily programming and high calculation efficiency, CA method has been widely applied in the study of solidification structure simulation and exhibits great advantages. Considering the current development level of computer hardware, numerical model and calculation method, microstructure simulation of large components mainly adopts macro-microscopic coupling calculation method, such as CA-FD/FE model. The heat transfer and other multi-physical fields are calculated at the level of coarse mesh, where as nucleation and dendritic growth are simulated at a much finer grid level. This paper reviews the main models and development of CA method used for nucleation simulation. The key aspects in the simulation of dendritic growth including mean solid-interface interface curvature, growth kinetics and the algorithm for eliminating “pseudo anisotropy” are discussed. Based on this, the development and application status of macro-micro coupling model during casting, directional solidification and other manufacturing fields are summarized. Finally, the existing problems and future tendency for simulation of solidification structures are analyzed.

Key wordsalloy solidification    nucleation    dendritic growth    cellular automaton    structure simulation
收稿日期: 2017-10-16     
基金资助:国家自然科学基金项目No.51474047
作者简介:

作者简介 王同敏,男,1971年生,教授,博士

图1  凝固组织模拟的尺度划分
图2  晶核密度、晶核分布及冷却曲线关系
图3  采用不同邻胞类型模拟的枝晶形貌
图4  改进的偏心算法
图5  具有不同择优生长取向的枝晶生长
图6  采用CAFE模型计算的1/4小方坯凝固微观组织
[1] Xu Q Y, Xiong S M, Liu B C.Advances in microstructure simulation of casting alloy[J]. Mater. Rev., 2002, 16(1): 11(许庆彦, 熊守美, 柳百成. 铸造合金的微观组织模拟研究进展[J]. 材料导报, 2002, 16(1): 11)
[2] Oldfield W.A quantitative approach to casting solidification: Freezing of cast iron[J]. ASM Trans., 1966, 59: 945
[3] Hunt J D.Steady-state columnar and equiaxed growth of dendrites and eutectic[J]. Mater. Sci. Eng., 1984, 65: 75
[4] Thevoz P, Desbiolles J L, Rappaz M.Modeling of equiaxed microstructure formation in casting[J]. Metall. Mater. Trans., 1989, 20A: 311
[5] Natsume Y, Ohsasa K.Prediction of casting structure in aluminum-base multi-component alloys using heterogeneous nucleation parameter[J]. ISIJ Int., 2006, 46: 896
[6] Huang F.Numerical simulation of microstructure evolution during solidification of twin-roll casting process [D]. Shenyang: Northeastern University, 2015(黄锋. 薄带双辊铸轧凝固过程组织演变的数值模拟 [D]. 沈阳: 东北大学, 2015)
[7] Wang T M.Research on the micro-modelling of metal solidification process [D]. Dalian: Dalian University of Technology, 2000(王同敏. 金属凝固过程微观模拟研究 [D]. 大连: 大连理工大学, 2000)
[8] Song Y D.Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012(宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012)
[9] Wu S P, Liu D R, Guo J J, et al.Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting[J]. Mater. Sci. Eng., 2006, A426: 240
[10] Lipton J, Glicksman M E, Kurz W.Dendritic growth into under cooled alloy[J]. Mater. Sci. Eng., 1984, 65: 57
[11] Kurz W, Giovanola B, Trivedi R.Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
[12] Trivedi R, Magnin P, Kurz W.Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
[13] Wang C Y, Beckermann C.A multiphase solute diffusion-model for dendritic alloy solidification[J]. Metall. Trans., 1993, 24A: 2787
[14] Wang C Y, Ahuja S, Beckermann C, et al.Multiparticle interfacial drag in equiaxed solidification[J]. Metall. Mater. Trans., 1995, 26B: 111
[15] Wang C Y, Beckermann C.Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J]. Metall. Mater. Trans., 1994, 25A: 1081
[16] Yu Y M, Lv Y L, Zhang Z Z, et al.Progress in numerical simulation of solidification microstructure using phase-field method[J]. Foundry, 2000, 49: 507(于艳梅, 吕衣礼, 张振忠等. 相场法凝固组织模拟的研究进展[J]. 铸造, 2000, 49: 507)
[17] Kobayashi R.Modeling and numerical simulations of dendritic crystal growth[J]. Physica, 1993, 63D: 410
[18] Boettinger W J.The solidification of multicomponent alloys[J]. J. Phase Equilib. Diffus., 2016, 37: 4
[19] T?nhardt R, Amberg G.Phase-field simulation of dendritic growth in a shear flow[J]. J. Cryst. Growth, 1998, 194: 406
[20] Karma A, Rappel W J.Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Phys. Rev., 1998, 57E: 4323
[21] Yin Y J, Zhou J X, Liao D M, et al.Phase-field simulation of dendritic solidification using a full threaded tree with adaptive meshing[J]. China Foundry, 2014, 11: 493
[22] Anderson M P, Srolovitz D J, Grest G S, et al.Computer simulation of grain growth—I. Kinetics[J]. Acta Metall., 1984, 32: 783
[23] Srolovitz D J, Anderson M P, Sahni P S, et al.Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics[J]. Acta Metall., 1984, 32: 793
[24] Zhang J X, Guan X J, Sun S.A modified Monte Carlo method in grain growth simulation[J]. Acta. Metall. Sin., 2004, 40: 457(张继祥, 关小军, 孙胜. 一种改进的晶粒长大Monte Carlo模拟方法[J]. 金属学报, 2004, 40: 457)
[25] Spittle J A, Brown S.Computer-simulation of the effects of alloy variables on the grain structures of castings[J]. Acta Metall., 1989, 37: 1803
[26] Beltran-Sanchez L, Stefanescu D M.Growth of solutal dendrites-A cellular automaton model[J]. Int. J. Cast Met. Res., 2002, 15: 251
[27] Sasikumar R, Sreenivasan R.Two dimensional simulation of dendrite morphology[J]. Acta Metall. Mater., 1994, 42: 2381
[28] Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253
[29] Beltran-Sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J]. Metall. Mater. Trans., 2004, 35A: 2471
[30] Gandin C A, Rappaz M.A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233
[31] Gandin C A, Desbiolles J L, Rappaz M, et al.A three-dimensional cellular automaton-finite element model for the prediction of soli-dification grain structures[J]. Metall. Mater. Trans., 1999, 30A: 3153
[32] Rappaz M, Gandin C A.Probabilistic modeling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
[33] Zhu F M, Tang Q Y, Zhang Q Y, et al.Cellular automaton modeling of micro-structure evolution during alloy solidification[J]. Acta Metall. Sin., 2016, 52: 1297(朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟[J]. 金属学报, 2016, 52: 1297)
[34] Pang R P, Wang F M, Zhang G Q, et al.Study of solidification thermal parameters of 430 ferrite stainless steel based on 3D-CAFE method[J]. Acta Metall. Sin., 2013, 49: 1234(庞瑞朋, 王福明, 张国庆等. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49: 1234)
[35] Zhang P, Hou H, Zhao Y H, et al.Microstructure simulation during directional solidification of nickel-based alloy based on CAFE model[J]. Trans. Nonferrous Met. Soc., 2016, 26: 782(张璞, 侯华, 赵宇宏等. 基于CAFE模型的镍基合金定向凝固过程显微组织模拟[J]. 中国有色金属学报, 2016, 26: 782)
[36] Lan P, Sun H B, Li Y, et al.3D CAFE model for simulating the solidification microstructure of 430 stainless steel[J]. J. Univ. Sci. Technol., 2014, 36: 315(兰鹏, 孙海波, 李阳等. 430不锈钢凝固显微组织模拟的3DCAFE模型[J]. 北京科技大学学报, 2014, 36: 315)
[37] Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823
[38] Wang W L, Luo S, Zhu M Y.Numerical simulation of dendritic growth of continuously cast high carbon steel[J]. Metall. Mater. Trans., 2015, 46A: 396
[39] Zhang X F, Zhao J Z, Jiang H X, et al.A three-dimensional cellular automaton model for dendritic growth in multi-component alloys[J]. Acta Mater., 2012, 60: 2249
[40] Zhu M F, Stefanescu D.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Mater., 2007, 55: 1741
[41] Wei L, Lin X, Wang M, et al.A cellular automaton model for the solidification of a pure substance[J]. Appl. Phys., 2011, 103A: 123
[42] Xu Q Y, Feng W M, Liu B C, et al.Numerical simulation of dendrite growth of aluminum alloy[J]. Acta Metall. Sin., 2002, 38: 799(许庆彦, 冯伟明, 柳百成等. 铝合金枝晶生长的数值模拟[J]. 金属学报, 2002, 38: 799)
[43] Fu Z N, Xu Q Y, Xiong S M.Numerical simulation on dendrite growth process of Mg alloy using cellular automaton method based on probability capturing model[J]. Chin. J. Nonferrous Met. Soc., 2007, 17: 1567(付振南, 许庆彦, 熊守美. 基于概率捕获模型的元胞自动机方法模拟镁合金枝晶生长过程[J]. 中国有色金属学报, 2007, 17: 1567)
[44] Wang W, Lee P D, Mclean M.A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971
[45] Nakagawa M, Natsume Y, Ohsasa K.Dendrite growth model using front tracking technique with new growth algorithm[J]. ISIJ Int., 2006, 46: 909
[46] Chen R, Xu Q Y, Liu B C.A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth[J]. J. Mater. Sci. Technol., 2014, 30: 1311
[47] Yin H, Felicelli S D.Dendrite growth simulation during solidification in the LENS process[J]. Acta Mater., 2010, 58: 1455
[48] Yu J, Xu Q Y, Cui K, et al.Numerical simulation of microstructure evolution based on a modified CA method[J]. Acta Metall. Sin., 2007, 43: 731(于靖, 许庆彦, 崔锴等. 基于一种改进CA模型的微观组织模拟[J]. 金属学报, 2007, 43: 731)
[49] Zhan X H, Wei Y H, Dong Z B.Cellular automaton simulation of grain growth with different orientation angles during solidification process[J]. J. Mater. Process. Technol., 2008, 208: 1
[50] Shin Y H, Hong C P.Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface[J]. ISIJ Int., 2002, 42: 359
[51] Zhu M F, Lee S Y, Hong C P.Modified cellular automaton model for the prediction of dendritic growth with melt convection.[J]. Phys. Rev., 2004, 69E: 61610
[52] Jacot A, Rappaz M.A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys[J]. Acta Mater., 2002, 50: 1909
[53] Wei L, Lin X, Wang M, et al.Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model[J]. Physica, 2012, 407B: 2471
[54] Wei L, Lin X, Wang M, et al.Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[J]. Mater. Discov., 2016, 3: 17
[55] Akagiri T, Natsume Y, Ohsasa K, et al.Evaluation of crystal multiplication at mold wall during solidification of casting[J]. ISIJ Int., 2008, 48: 355
[56] Hou Z B, Jiang F, Cheng G G.Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method[J]. ISIJ Int., 2012, 52: 1301
[57] Tsai D C, Hwang W S.Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1072
[58] Tsai D C, Hsu M S, Hwang W S, et al.Mathematical modeling of solidification microstructure of pure copper by vacuum continuous casting and its experimental verification[J]. ISIJ Int., 2010, 50: 1843
[59] Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823
[60] Zhang H Q, Zhang J, Li Y F, et al.Stray grain formation in casting platform of third generation Ni-base single crystal superalloy[J]. China Foundry, 2014, 63: 128(张宏琦, 张军, 李亚峰等. 一种第三代镍基单晶高温合金铸件截面突变处的杂晶形成过程[J]. 铸造, 2014, 63: 128)
[61] Liu D R, Reinhart G, Mangelinck?Noel N, et al. Coupled cellular automaton (CA)-finite element (FE) modeling of directional solidification of Al-3.5wt% Ni alloy: A comparison with X-ray synchrotron observations[J]. ISIJ Int., 2014, 54: 392
[62] Wei L, Lin X, Wang M, et al.Cellular automaton simulation of the molten pool of laser solid forming process[J]. Acta Phys. Sin., 2015, 64: 018103(魏雷, 林鑫, 王猛等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟[J]. 物理学报, 2015, 64: 018103)
[63] Chen S J, Guillemot G, Gandin C A.3D coupled cellular automaton (CA)-finite element (FE) modeling for solidification grain structures in gas tungsten arc welding (GTAW)[J]. ISIJ Int., 2014, 54: 401
[64] Chen S J, Guillemot G, Gandin C A.Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes[J]. Acta Mater., 2016, 115: 448
[65] Feng X H, Zhao F Z, Jia H M, et al.Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field[J]. Ultrason. Sonochem., 2018, 40: 113
[66] Liu Q L, Li X M, Jiang Y H.Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM[J]. J. Mater. Res., 2017, 32: 3175
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[3] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[4] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[5] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[6] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[7] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[8] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[9] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[10] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[11] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[12] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[13] 邹宗园, 许小奎, 李银潇, 王超. 大热输入焊接用钢的焊接粗晶热影响区韧性提升方法研究[J]. 金属学报, 2017, 53(8): 957-967.
[14] 杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
[15] 朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.