|
|
合金凝固组织微观模拟研究进展与应用 |
王同敏1,2, 魏晶晶1,2, 王旭东1,2( ), 姚曼1,2 |
1 大连理工大学材料科学与工程学院 大连 116024 2 大连理工大学辽宁省凝固控制与数字化制备技术重点实验室 大连 116024 |
|
Progress and Application of Microstructure Simulation of Alloy Solidification |
Tongmin WANG1,2, Jingjing WEI1,2, Xudong WANG1,2( ), Man YAO1,2 |
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), Dalian University of Technology, Dalian 116024, China |
引用本文:
王同敏, 魏晶晶, 王旭东, 姚曼. 合金凝固组织微观模拟研究进展与应用[J]. 金属学报, 2018, 54(2): 193-203.
Tongmin WANG,
Jingjing WEI,
Xudong WANG,
Man YAO.
Progress and Application of Microstructure Simulation of Alloy Solidification[J]. Acta Metall Sin, 2018, 54(2): 193-203.
[1] | Xu Q Y, Xiong S M, Liu B C.Advances in microstructure simulation of casting alloy[J]. Mater. Rev., 2002, 16(1): 11(许庆彦, 熊守美, 柳百成. 铸造合金的微观组织模拟研究进展[J]. 材料导报, 2002, 16(1): 11) | [2] | Oldfield W.A quantitative approach to casting solidification: Freezing of cast iron[J]. ASM Trans., 1966, 59: 945 | [3] | Hunt J D.Steady-state columnar and equiaxed growth of dendrites and eutectic[J]. Mater. Sci. Eng., 1984, 65: 75 | [4] | Thevoz P, Desbiolles J L, Rappaz M.Modeling of equiaxed microstructure formation in casting[J]. Metall. Mater. Trans., 1989, 20A: 311 | [5] | Natsume Y, Ohsasa K.Prediction of casting structure in aluminum-base multi-component alloys using heterogeneous nucleation parameter[J]. ISIJ Int., 2006, 46: 896 | [6] | Huang F.Numerical simulation of microstructure evolution during solidification of twin-roll casting process [D]. Shenyang: Northeastern University, 2015(黄锋. 薄带双辊铸轧凝固过程组织演变的数值模拟 [D]. 沈阳: 东北大学, 2015) | [7] | Wang T M.Research on the micro-modelling of metal solidification process [D]. Dalian: Dalian University of Technology, 2000(王同敏. 金属凝固过程微观模拟研究 [D]. 大连: 大连理工大学, 2000) | [8] | Song Y D.Microstructure simulation of magnesium alloy [D]. Dalian: Dalian University of Technology, 2012(宋迎德. 镁合金凝固组织模拟 [D]. 大连: 大连理工大学, 2012) | [9] | Wu S P, Liu D R, Guo J J, et al.Numerical simulation of microstructure evolution of Ti-6Al-4V alloy in vertical centrifugal casting[J]. Mater. Sci. Eng., 2006, A426: 240 | [10] | Lipton J, Glicksman M E, Kurz W.Dendritic growth into under cooled alloy[J]. Mater. Sci. Eng., 1984, 65: 57 | [11] | Kurz W, Giovanola B, Trivedi R.Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823 | [12] | Trivedi R, Magnin P, Kurz W.Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971 | [13] | Wang C Y, Beckermann C.A multiphase solute diffusion-model for dendritic alloy solidification[J]. Metall. Trans., 1993, 24A: 2787 | [14] | Wang C Y, Ahuja S, Beckermann C, et al.Multiparticle interfacial drag in equiaxed solidification[J]. Metall. Mater. Trans., 1995, 26B: 111 | [15] | Wang C Y, Beckermann C.Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification[J]. Metall. Mater. Trans., 1994, 25A: 1081 | [16] | Yu Y M, Lv Y L, Zhang Z Z, et al.Progress in numerical simulation of solidification microstructure using phase-field method[J]. Foundry, 2000, 49: 507(于艳梅, 吕衣礼, 张振忠等. 相场法凝固组织模拟的研究进展[J]. 铸造, 2000, 49: 507) | [17] | Kobayashi R.Modeling and numerical simulations of dendritic crystal growth[J]. Physica, 1993, 63D: 410 | [18] | Boettinger W J.The solidification of multicomponent alloys[J]. J. Phase Equilib. Diffus., 2016, 37: 4 | [19] | T?nhardt R, Amberg G.Phase-field simulation of dendritic growth in a shear flow[J]. J. Cryst. Growth, 1998, 194: 406 | [20] | Karma A, Rappel W J.Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Phys. Rev., 1998, 57E: 4323 | [21] | Yin Y J, Zhou J X, Liao D M, et al.Phase-field simulation of dendritic solidification using a full threaded tree with adaptive meshing[J]. China Foundry, 2014, 11: 493 | [22] | Anderson M P, Srolovitz D J, Grest G S, et al.Computer simulation of grain growth—I. Kinetics[J]. Acta Metall., 1984, 32: 783 | [23] | Srolovitz D J, Anderson M P, Sahni P S, et al.Computer simulation of grain growth—II. Grain size distribution, topology, and local dynamics[J]. Acta Metall., 1984, 32: 793 | [24] | Zhang J X, Guan X J, Sun S.A modified Monte Carlo method in grain growth simulation[J]. Acta. Metall. Sin., 2004, 40: 457(张继祥, 关小军, 孙胜. 一种改进的晶粒长大Monte Carlo模拟方法[J]. 金属学报, 2004, 40: 457) | [25] | Spittle J A, Brown S.Computer-simulation of the effects of alloy variables on the grain structures of castings[J]. Acta Metall., 1989, 37: 1803 | [26] | Beltran-Sanchez L, Stefanescu D M.Growth of solutal dendrites-A cellular automaton model[J]. Int. J. Cast Met. Res., 2002, 15: 251 | [27] | Sasikumar R, Sreenivasan R.Two dimensional simulation of dendrite morphology[J]. Acta Metall. Mater., 1994, 42: 2381 | [28] | Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253 | [29] | Beltran-Sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J]. Metall. Mater. Trans., 2004, 35A: 2471 | [30] | Gandin C A, Rappaz M.A coupled finite-element cellular-automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233 | [31] | Gandin C A, Desbiolles J L, Rappaz M, et al.A three-dimensional cellular automaton-finite element model for the prediction of soli-dification grain structures[J]. Metall. Mater. Trans., 1999, 30A: 3153 | [32] | Rappaz M, Gandin C A.Probabilistic modeling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345 | [33] | Zhu F M, Tang Q Y, Zhang Q Y, et al.Cellular automaton modeling of micro-structure evolution during alloy solidification[J]. Acta Metall. Sin., 2016, 52: 1297(朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟[J]. 金属学报, 2016, 52: 1297) | [34] | Pang R P, Wang F M, Zhang G Q, et al.Study of solidification thermal parameters of 430 ferrite stainless steel based on 3D-CAFE method[J]. Acta Metall. Sin., 2013, 49: 1234(庞瑞朋, 王福明, 张国庆等. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49: 1234) | [35] | Zhang P, Hou H, Zhao Y H, et al.Microstructure simulation during directional solidification of nickel-based alloy based on CAFE model[J]. Trans. Nonferrous Met. Soc., 2016, 26: 782(张璞, 侯华, 赵宇宏等. 基于CAFE模型的镍基合金定向凝固过程显微组织模拟[J]. 中国有色金属学报, 2016, 26: 782) | [36] | Lan P, Sun H B, Li Y, et al.3D CAFE model for simulating the solidification microstructure of 430 stainless steel[J]. J. Univ. Sci. Technol., 2014, 36: 315(兰鹏, 孙海波, 李阳等. 430不锈钢凝固显微组织模拟的3DCAFE模型[J]. 北京科技大学学报, 2014, 36: 315) | [37] | Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823 | [38] | Wang W L, Luo S, Zhu M Y.Numerical simulation of dendritic growth of continuously cast high carbon steel[J]. Metall. Mater. Trans., 2015, 46A: 396 | [39] | Zhang X F, Zhao J Z, Jiang H X, et al.A three-dimensional cellular automaton model for dendritic growth in multi-component alloys[J]. Acta Mater., 2012, 60: 2249 | [40] | Zhu M F, Stefanescu D.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Mater., 2007, 55: 1741 | [41] | Wei L, Lin X, Wang M, et al.A cellular automaton model for the solidification of a pure substance[J]. Appl. Phys., 2011, 103A: 123 | [42] | Xu Q Y, Feng W M, Liu B C, et al.Numerical simulation of dendrite growth of aluminum alloy[J]. Acta Metall. Sin., 2002, 38: 799(许庆彦, 冯伟明, 柳百成等. 铝合金枝晶生长的数值模拟[J]. 金属学报, 2002, 38: 799) | [43] | Fu Z N, Xu Q Y, Xiong S M.Numerical simulation on dendrite growth process of Mg alloy using cellular automaton method based on probability capturing model[J]. Chin. J. Nonferrous Met. Soc., 2007, 17: 1567(付振南, 许庆彦, 熊守美. 基于概率捕获模型的元胞自动机方法模拟镁合金枝晶生长过程[J]. 中国有色金属学报, 2007, 17: 1567) | [44] | Wang W, Lee P D, Mclean M.A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection[J]. Acta Mater., 2003, 51: 2971 | [45] | Nakagawa M, Natsume Y, Ohsasa K.Dendrite growth model using front tracking technique with new growth algorithm[J]. ISIJ Int., 2006, 46: 909 | [46] | Chen R, Xu Q Y, Liu B C.A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth[J]. J. Mater. Sci. Technol., 2014, 30: 1311 | [47] | Yin H, Felicelli S D.Dendrite growth simulation during solidification in the LENS process[J]. Acta Mater., 2010, 58: 1455 | [48] | Yu J, Xu Q Y, Cui K, et al.Numerical simulation of microstructure evolution based on a modified CA method[J]. Acta Metall. Sin., 2007, 43: 731(于靖, 许庆彦, 崔锴等. 基于一种改进CA模型的微观组织模拟[J]. 金属学报, 2007, 43: 731) | [49] | Zhan X H, Wei Y H, Dong Z B.Cellular automaton simulation of grain growth with different orientation angles during solidification process[J]. J. Mater. Process. Technol., 2008, 208: 1 | [50] | Shin Y H, Hong C P.Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface[J]. ISIJ Int., 2002, 42: 359 | [51] | Zhu M F, Lee S Y, Hong C P.Modified cellular automaton model for the prediction of dendritic growth with melt convection.[J]. Phys. Rev., 2004, 69E: 61610 | [52] | Jacot A, Rappaz M.A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys[J]. Acta Mater., 2002, 50: 1909 | [53] | Wei L, Lin X, Wang M, et al.Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model[J]. Physica, 2012, 407B: 2471 | [54] | Wei L, Lin X, Wang M, et al.Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification[J]. Mater. Discov., 2016, 3: 17 | [55] | Akagiri T, Natsume Y, Ohsasa K, et al.Evaluation of crystal multiplication at mold wall during solidification of casting[J]. ISIJ Int., 2008, 48: 355 | [56] | Hou Z B, Jiang F, Cheng G G.Solidification structure and compactness degree of central equiaxed grain zone in continuous casting billet using cellular automaton-finite element method[J]. ISIJ Int., 2012, 52: 1301 | [57] | Tsai D C, Hwang W S.Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1072 | [58] | Tsai D C, Hsu M S, Hwang W S, et al.Mathematical modeling of solidification microstructure of pure copper by vacuum continuous casting and its experimental verification[J]. ISIJ Int., 2010, 50: 1843 | [59] | Luo S, Zhu M Y, Louhenkilpi S.Numerical simulation of solidification structure of high carbon steel in continuous casting using cellular automaton method[J]. ISIJ Int., 2012, 52: 823 | [60] | Zhang H Q, Zhang J, Li Y F, et al.Stray grain formation in casting platform of third generation Ni-base single crystal superalloy[J]. China Foundry, 2014, 63: 128(张宏琦, 张军, 李亚峰等. 一种第三代镍基单晶高温合金铸件截面突变处的杂晶形成过程[J]. 铸造, 2014, 63: 128) | [61] | Liu D R, Reinhart G, Mangelinck?Noel N, et al. Coupled cellular automaton (CA)-finite element (FE) modeling of directional solidification of Al-3.5wt% Ni alloy: A comparison with X-ray synchrotron observations[J]. ISIJ Int., 2014, 54: 392 | [62] | Wei L, Lin X, Wang M, et al.Cellular automaton simulation of the molten pool of laser solid forming process[J]. Acta Phys. Sin., 2015, 64: 018103(魏雷, 林鑫, 王猛等. 激光立体成形中熔池凝固微观组织的元胞自动机模拟[J]. 物理学报, 2015, 64: 018103) | [63] | Chen S J, Guillemot G, Gandin C A.3D coupled cellular automaton (CA)-finite element (FE) modeling for solidification grain structures in gas tungsten arc welding (GTAW)[J]. ISIJ Int., 2014, 54: 401 | [64] | Chen S J, Guillemot G, Gandin C A.Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes[J]. Acta Mater., 2016, 115: 448 | [65] | Feng X H, Zhao F Z, Jia H M, et al.Numerical simulation of non-dendritic structure formation in Mg-Al alloy solidified with ultrasonic field[J]. Ultrason. Sonochem., 2018, 40: 113 | [66] | Liu Q L, Li X M, Jiang Y H.Microstructure evolution of large-scale titanium slab ingot based on CAFE method during EBCHM[J]. J. Mater. Res., 2017, 32: 3175 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|