|
|
316L激光粉末床熔覆IN718偏析带形成过程的模拟 |
沈盟凯1,2,3, 董太宁4, 葛鸿浩1,2,3( ), 石新升1,2,3, 张群莉1,2,3, 刘云峰2,3, 姚建华1,2,3 |
1.浙江工业大学 机械工程学院 杭州 310014 2.浙江工业大学 特种装备制造与先进加工技术教育部/浙江省重点实验室 杭州 310014 3.浙江工业大学 激光先进制造研究院 杭州 310014 4.杭州汽轮动力集团股份有限公司 杭州 310022 |
|
Simulation of the Formation Mechanism of Segregation Bands During IN718 Cladding on 316L Using Laser Powder Bed Fusion |
SHEN Mengkai1,2,3, DONG Taining4, GE Honghao1,2,3( ), SHI Xinsheng1,2,3, ZHANG Qunli1,2,3, LIU Yunfeng2,3, YAO Jianhua1,2,3 |
1.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2.Ministry of Education/Zhejiang Provincial Key Laboratory of Special Equipment Manufacturing and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou 310014, China 3.Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China 4.Hangzhou Steam Turbine Power Group Co. Ltd., Hangzhou 310022, China |
引用本文:
沈盟凯, 董太宁, 葛鸿浩, 石新升, 张群莉, 刘云峰, 姚建华. 316L激光粉末床熔覆IN718偏析带形成过程的模拟[J]. 金属学报, 2025, 61(8): 1193-1202.
Mengkai SHEN,
Taining DONG,
Honghao GE,
Xinsheng SHI,
Qunli ZHANG,
Yunfeng LIU,
Jianhua YAO.
Simulation of the Formation Mechanism of Segregation Bands During IN718 Cladding on 316L Using Laser Powder Bed Fusion[J]. Acta Metall Sin, 2025, 61(8): 1193-1202.
[1] |
Chen N N, Khan H A, Wan Z X, et al. Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625 [J]. Addit. Manuf., 2020, 32: 101037
|
[2] |
Barr C, Sun S D, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels [J]. Surf. Coat. Technol., 2018, 340: 126
|
[3] |
Soysal T, Kou S, Tat D, et al. Macrosegregation in dissimilar-metal fusion welding [J]. Acta Mater., 2016, 110: 149
|
[4] |
Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad Aermet100 steel coating on 300M steel substrate [J]. Surf. Coat. Technol., 2017, 325: 352
|
[5] |
Gan Z T, Liu H, Li S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron [J]. Int. J. Heat Mass Transf., 2017, 111: 709
|
[6] |
Ge H H, Xu H Z, Wang J F, et al. Investigation on composition distribution of dissimilar laser cladding process using a three-phase model [J]. Int. J. Heat Mass Transf., 2021, 170: 120975
|
[7] |
Li Z Y, Yu G, He X L, et al. Fluid flow and solute dilution in laser linear butt joining of 304SS and Ni [J]. Int. J. Heat Mass Transf., 2020, 161: 120233
|
[8] |
Wolff S J, Gan Z T, Lin S, et al. Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel [J]. Addit. Manuf., 2019, 27: 540
|
[9] |
Ren N, Li J, Panwisawas C, et al. Thermal-solutal-fluid flow of channel segregation during directional solidification of single-crystal nickel-based superalloys [J]. Acta Mater., 2021, 206: 116620
|
[10] |
Chen R, Xu Q Y, Liu B C. A modified cellular automaton model for the quantitative prediction of equiaxed and columnar dendritic growth [J]. J. Mater. Sci. Technol., 2014, 30: 1311
doi: 10.1016/j.jmst.2014.06.006
|
[11] |
Wang W L, Ji C, Luo S, et al. Modeling of dendritic evolution of continuously cast steel billet with cellular automaton [J]. Metall. Mater. Trans., 2018, 49B: 200
|
[12] |
Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys [J]. Acta Mater., 1999, 47: 4253
|
[13] |
Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts [J]. Metall. Mater. Trans., 2004, 35A: 2471
|
[14] |
Zhu M F, Stefanescu D M. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys [J]. Acta Mater., 2007, 55: 1741
|
[15] |
Zhang H, Xu Q Y, Shi Z X, et al. Numerical simulation of dendrite grain growth of DD6 superalloy during directional solidification process [J]. Acta Metall. Sin., 2014, 50: 345
doi: 10.3724/SP.J.1037.2013.00496
|
[15] |
张 航, 许庆彦, 史振学 等. DD6高温合金定向凝固枝晶生长的数值模拟研究 [J]. 金属学报, 2014, 50: 345
|
[16] |
Wang W L, Wang Z H, Yin S W, et al. Numerical simulation of solute undercooling influenced columnar to equiaxed transition of Fe-C alloy with cellular automaton [J]. Comput. Mater. Sci., 2019, 167: 52
|
[17] |
Chen R, Xu Q Y, Liu B C. Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys [J]. Comput. Mater. Sci., 2015, 105: 90
|
[18] |
Li J, Wu M, Hao J, et al. Simulation of channel segregation using a two-phase columnar solidification model—part i: Model description and verification [J]. Comput. Mater. Sci., 2012, 55: 407
|
[19] |
Xu H Z, Ge H H, Wang J F, et al. Effects of process parameters upon chromium element distribution in laser-cladded 316L stainless steel [J]. Chin. J. Lasers, 2020, 47(12): 1202004
|
[19] |
徐瀚宗, 葛鸿浩, 王杰锋 等. 工艺参数对316L不锈钢激光熔覆层中Cr元素分布的影响 [J]. 中国激光, 2020, 47(12): 1202004
|
[20] |
Ren F L, Ge H H, Fang H, et al. Simulation of the dendrite growth during directional solidification under steady magnetic field using three-dimensional cellular automaton method coupled with eulerian multiphase [J]. Int. J. Heat Mass Transf., 2024, 218: 124809
|
[21] |
Luo S, Zhu M Y. A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method [J]. Comput. Mater. Sci., 2013, 71: 10
|
[22] |
Zhu M F, Tang Q Y, Zhang Q Y, et al. Cellular automaton modeling of microstructure evolution during alloy solidification [J]. Acta Metall. Sin., 2016, 52: 1297
|
[22] |
朱鸣芳, 汤倩玉, 张庆宇 等. 合金凝固过程中显微组织演化的元胞自动机模拟 [J]. 金属学报, 2016, 52: 1297
doi: 10.11900/0412.1961.2016.00361
|
[23] |
Tan W D, Wen S Y, Bailey N, et al. Multiscale modeling of transport phenomena and dendritic growth in laser cladding processes [J]. Metall. Mater. Trans., 2011, 42B: 1306
|
[24] |
Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J]. Nat. Commun., 2018, 9: 1355
doi: 10.1038/s41467-018-03734-7
pmid: 29636443
|
[25] |
Zhao C, Fezzaa K, Cunningham R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction [J]. Sci. Rep., 2017, 7: 3602
doi: 10.1038/s41598-017-03761-2
pmid: 28620232
|
[26] |
Bidare P, Bitharas I, Ward R M, et al. Fluid and particle dynamics in laser powder bed fusion [J]. Acta Mater., 2018, 142: 107
|
[27] |
Li X X, Tan W D. Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing [J]. Comput. Mater. Sci., 2018, 153: 159
|
[28] |
Wei H L, Knapp G L, Mukherjee T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718 [J]. Addit. Manuf., 2019, 25: 448
doi: 10.1016/j.addma.2018.11.028
|
[29] |
Aucott L, Dong H B, Mirihanage W, et al. Revealing internal flow behaviour in arc welding and additive manufacturing of metals [J]. Nat. Commun., 2018, 9: 5414
doi: 10.1038/s41467-018-07900-9
pmid: 30575762
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|