|
|
强磁场下过冷Cu-Co/Cu-Co-Fe合金的凝固组织和摩擦性能 |
魏晨, 王军( ), 闫育洁, 范嘉懿, 李金山( ) |
西北工业大学 凝固技术国家重点实验室 西安 710072 |
|
Solidification Microstructure and Wear Properties of Undercooled Cu-Co/Cu-Co-Fe Alloys Under a High Magnetic Field |
WEI Chen, WANG Jun( ), YAN Yujie, FAN Jiayi, LI Jinshan( ) |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
魏晨, 王军, 闫育洁, 范嘉懿, 李金山. 强磁场下过冷Cu-Co/Cu-Co-Fe合金的凝固组织和摩擦性能[J]. 金属学报, 2024, 60(11): 1571-1583.
Chen WEI,
Jun WANG,
Yujie YAN,
Jiayi FAN,
Jinshan LI.
Solidification Microstructure and Wear Properties of Undercooled Cu-Co/Cu-Co-Fe Alloys Under a High Magnetic Field[J]. Acta Metall Sin, 2024, 60(11): 1571-1583.
1 |
Uchida S, Kimura T, Nakamoto T, et al. Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting [J]. Mater. Des., 2019, 175: 107815
|
2 |
Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
|
2 |
邓聪坤, 江鸿翔, 赵九洲 等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
|
3 |
Li Y F, Li S W, Wang Y R. Brief review on domestic research in iron-based wear-resistant materials [J]. Foundry Technol., 2022, 43: 389
|
3 |
李烨飞, 李书文, 王怡然. 国内铁基耐磨材料研究简述 [J]. 铸造技术, 2022, 43: 389
|
4 |
Sun Z B, Song X P, Hu Z D, et al. Liquid separating behavior of Cu-Co alloys under deep supercooling [J]. Chin. J. Nonferrous Met., 2001, 11: 68
|
4 |
孙占波, 宋晓平, 胡柱东 等. 深过冷条件下Cu-Co合金的液相分解 [J]. 中国有色金属学报, 2001, 11: 68
|
5 |
Liu S C, Jie J C, Zhang J J, et al. A surface energy driven dissolution model for immiscible Cu-Fe alloy [J]. J. Mol. Liq., 2018, 261: 232
|
6 |
Zhao J Z, Li H L, Li H Q, et al. Microstructure formation in centrifugally cast Al-Bi alloys [J]. Comput. Mater. Sci., 2010, 49: 121
|
7 |
Liu S C, Jie J C, Guo Z K, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions [J]. J. Alloys Compd., 2018, 742: 99
|
8 |
Peng Y L, Wang Q, Wang N. A comparative study on the migration of minor phase globule in different-sized droplets of Fe-58wt.%Sn immiscible alloy [J]. Scr. Mater., 2019, 168: 38
|
9 |
Wu Y Q, Li C J. Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements [J]. J. Appl. Phys., 2012, 111: 073521
|
10 |
Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
|
11 |
Zhang Y K, Gao J, Wei L L, et al. Novel insight into microstructural evolution of phase-separated Cu-Co alloys under influence of forced convection [J]. J. Mater. Sci., 2011, 46: 6603
|
12 |
Yang W, Chen S H, Yu H, et al. Effects of liquid separation on the microstructure formation and hardness behavior of undercooled Cu-Co alloy [J]. Appl. Phys., 2012, 109A: 665
|
13 |
Turchanin M A, Dreval L A, Abdulov A R, et al. Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu-Fe-Co system [J]. Powder Metall. Met. Ceram., 2011, 50: 98
|
14 |
Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state [J]. Acta Metall., 1958, 6: 704
|
15 |
Liu N, Liu F, Chen Z, et al. Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts [J]. J. Mater. Sci. Technol., 2012, 28: 622
|
16 |
Dai F P, Wang W L, Ruan Y, et al. Liquid phase separation and rapid dendritic growth of undercooled ternary Fe60Co20Cu20 alloy [J]. Appl. Phys., 2018, 124A: 20
|
17 |
Bai X J, Wang Y C, Cao C D. Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy [J]. Chin. Phys., 2018, 27B: 116402
|
18 |
Wei C, Wang J, He Y X, et al. Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu-Co immiscible alloy [J]. J. Alloys Compd., 2020, 842: 155502
|
19 |
Shuai S S, Wen S K, Guo R, et al. Research progress on solidification and nucleation of metals under magnetic fields [J]. Foundry Technol., 2022, 43: 699
|
19 |
帅三三, 温烁凯, 郭 锐 等. 磁场下金属凝固过程形核行为的研究现状 [J]. 铸造技术, 2022, 43: 699
|
20 |
Liu T, Wang Q, Yuan Y, et al. High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review [J]. Chin. Phys., 2018, 27B: 118103
|
21 |
Martin J E, Venturini E, Odinek J, et al. Anisotropic magnetism in field-structured composites [J]. Phys. Rev., 2000, 61E: 2818
|
22 |
Yan Y J, Wei C, He Y X, et al. Effect of high magnetic field on solidification microstructure evolution of a Cu-Fe immiscible alloy [J]. China Foundry, 2022, 19: 335
|
23 |
Wei C, Li J S, Yan Y J, et al. Effect of high magnetic field on the microstructure evolution behavior of undercooled Cu-Co alloy [J]. Foundry Technol., 2022, 43: 180
|
23 |
魏 晨, 李金山, 闫育洁 等. 强磁场对过冷Cu-Co合金组织演化行为的影响 [J]. 铸造技术, 2022, 43: 180
|
24 |
He Y X, Li J S, Li L Y, et al. Magnetic-field-induced chain-like assemblies of the primary phase during non-equilibrium solidification of a Co-B eutectic alloy: Experiments and modeling [J]. J. Alloys Compd., 2020, 815: 152446
|
25 |
Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
|
26 |
Wang J, He Y X, Li J S, et al. Experimental platform for solidification and in-situ magnetization measurement of undercooled melt under strong magnetic field [J]. Rev. Sci. Instrum., 2015, 86: 025102
|
27 |
Wei C, Wang J, He Y X, et al. Liquid-liquid phase separation in immiscible Cu-Co alloy [J]. Mater. Lett., 2020, 268: 127585
|
28 |
Wang W L, Hu L, Luo S B, et al. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy [J]. Intermetallics, 2016, 77: 41
|
29 |
Sugioka K I, Inoue T, Kitahara T, et al. Study on the effect of melt convection on phase separation structures in undercooled CuCo alloys using an electromagnetic levitator superimposed with a static magnetic field [J]. Metall. Mater. Trans., 2014, 45B: 1439
|
30 |
Costa T A, Dias M, Freitas E S, et al. The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys [J]. J. Alloys Compd., 2016, 689: 767
|
31 |
Schouwenaars R, Jacobo V H, Ortiz A. Microstructural aspects of wear in soft tribological alloys [J]. Wear, 2007, 263: 727
|
32 |
Bowden F P, Leben L. The nature of sliding and the analysis of friction [J]. Proc. Roy. Soc., 1939, 169A: 371
|
33 |
Wang J, Li J S, Hu R, et al. Anomalous magnetism and normal field instability in supercooled liquid cobalt [J]. Appl. Phys. Lett., 2014, 105: 144101
|
34 |
Cruz K S, Meza E S, Fernandes F A P, et al. Dendritic arm spacing affecting mechanical properties and wear behavior of Al-Sn and Al-Si alloys directionally solidified under unsteady-state conditions [J]. Metall. Mater. Trans., 2010, 41A: 972
|
35 |
Wang M L, Lu Y P, Zhang G J, et al. A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding [J]. Vacuum, 2021, 184: 109905
|
36 |
de Alfaia M Â O, Oliveira R, Lima T S, et al. Effects of cooling rate and microstructure scale on wear resistance of unidirectionally solidified Al-3.2wt.%Bi-(1; 3) wt.%Pb alloys [J]. Mater. Today Commun., 2020, 25: 101659
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|