Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1571-1583    DOI: 10.11900/0412.1961.2023.00088
  研究论文 本期目录 | 过刊浏览 |
强磁场下过冷Cu-Co/Cu-Co-Fe合金的凝固组织和摩擦性能
魏晨, 王军(), 闫育洁, 范嘉懿, 李金山()
西北工业大学 凝固技术国家重点实验室 西安 710072
Solidification Microstructure and Wear Properties of Undercooled Cu-Co/Cu-Co-Fe Alloys Under a High Magnetic Field
WEI Chen, WANG Jun(), YAN Yujie, FAN Jiayi, LI Jinshan()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

魏晨, 王军, 闫育洁, 范嘉懿, 李金山. 强磁场下过冷Cu-Co/Cu-Co-Fe合金的凝固组织和摩擦性能[J]. 金属学报, 2024, 60(11): 1571-1583.
Chen WEI, Jun WANG, Yujie YAN, Jiayi FAN, Jinshan LI. Solidification Microstructure and Wear Properties of Undercooled Cu-Co/Cu-Co-Fe Alloys Under a High Magnetic Field[J]. Acta Metall Sin, 2024, 60(11): 1571-1583.

全文: PDF(6216 KB)   HTML
摘要: 

少数相均匀分布的难混溶合金是应用于制造电接触器件材料以及耐磨汽车部件的潜在替代品,理解难混溶合金微观组织的演化及其与磨损行为的相互关系对其工业应用十分重要。由于二元Cu-Co和三元Cu-Co-Fe难混溶合金易于发生液相分离,采用传统的铸造方法难以获得均匀的微观组织。本工作在强磁场下调控难混溶合金的微观组织,进而研究合金组织演化行为对摩擦性能的影响。实验结果表明,无磁场小过冷度下,Cu50Co50和Cu52Co24Fe24难混溶合金的微观组织为枝晶形貌,大过冷度下Cu50Co50合金的微观组织为标准的核-壳结构,Cu52Fe24Co24合金则为偏心的核-壳结构。随着磁场的施加,Cu50Co50和Cu52Co24Fe24合金中的第二相均沿磁场方向被拉长,垂直磁场方向上合金中第二相尺寸均显著减小,但Cu52Co24Fe24合金的微观组织分布更为均匀。无论是否施加强磁场,Cu50Co50和Cu52Co24Fe24合金中具有大过冷度的试样均具有较好的耐磨性能。Cu50Co50和Cu52Co24Fe24难混溶合金在磨损实验中均存在磨粒磨损和粘着磨损机制,其特征是材料脱落产生的粗糙表面以及滑动方向上存在的平行划痕。此外,Cu52Fe24Co24合金较高的硬度以及磁场下微观组织的相对均匀分布,使其具有较好的耐磨性能。

关键词 难混溶合金凝固强磁场摩擦    
Abstract

As functional metal materials, immiscible alloys demonstrate wide application prospects in industrial and electronic fields. Immiscible alloys with a uniformly distributed minority phase are a potential substitute for the materials applied in the manufacture of electric contactors and wear-resistant automotive components. Understanding the evolution of various microstructures of immiscible alloys and its correlation with their wear behavior is crucial for their industrial applications. Owing to the liquid-phase separation characteristics of binary Cu-Co and ternary Cu-Co-Fe immiscible alloys, segregation occurred or even a layered microstructure was formed by using conventional casting methods, and obtaining a uniform microstructure was difficult, which seriously limited their applications. This study presents a new strategy for inhibiting the liquid-phase separation and improving the properties of immiscible alloys. Under a high magnetic field, the microstructure of an undercooled alloy was changed, affecting its wear behavior. The experimental results reveal that the microstructures of Cu50Co50 and Cu52Co24Fe24 alloys showed dendritic morphology at modest undercooling without a magnetic field, while the microstructure of Cu50Co50 alloy exhibited a core-shell structure and Cu52Co24Fe24 alloy exhibited an eccentric core-shell structure under large undercooling. Moreover, the application of a high magnetic field resulted in the more uniform microstructure of Cu52Co24Fe24 alloy. With the application of a high magnetic field, the second phases generated by the phase separation of Cu50Co50 and Cu52Co24Fe24 alloys were elongated parallel to the magnetic field direction, and the size of second phases in the alloys decreased significantly in the perpendicular field direction, however, the microstructures of the Cu52Co24Fe24 alloy showed a more uniform distribution. Specimens with large undercoolings in Cu50Co50 and Cu52Co24Fe24 alloys exhibited excellent wear resistance regardless of the application of a high magnetic field. Any alloy that examined abrasive and adhesive wear mechanisms during the wear tests was characterized by rough surfaces generated by material detachment and parallel scratches in the sliding direction. Furthermore, the Cu52Co24Fe24 alloy has a high hardness and a relatively uniform distribution of microstructure under a magnetic field, resulting in the best wear resistance.

Key wordsimmiscible alloy    solidification    high magnetic field    wear
收稿日期: 2023-03-03     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52174375);国家自然科学基金项目(51690163);大学生创新创业计划资助项目(S202210699088);陕西省创新能力支撑计划项目(2020KJXX-073);凝固技术国家重点实验室自主课题项目(2023-TS-13)
通讯作者: 王 军,nwpuwj@nwpu.edu.cn,主要从事金属材料及其凝固行为的研究;
李金山,ljsh@nwpu.edu.cn,主要从事金属材料及其精确热成形技术的研究
Corresponding author: WANG Jun, professor, Tel: (029)88460568, E-mail: nwpuwj@nwpu.edu.cn;
LI Jinshan, professor, Tel: (029)88460568, E-mail: ljsh@nwpu.edu.cn
作者简介: 魏 晨,女,1996年生,博士
图1  强磁场凝固装置示意图
图2  不同磁场强度不同过冷度下Cu50Co50合金的凝固组织
图3  不同磁场强度不同过冷度下Cu52Co24Fe24合金的凝固组织
图4  不同磁场强度及不同过冷度下Cu50Co50合金磨损表面形貌
图5  不同磁场强度及不同过冷度下Cu52Co24Fe24合金磨损表形貌
图6  不同磁场强度及不同过冷度下Cu50Co50合金摩擦系数随时间的变化曲线及平均摩擦系数
图7  不同磁场强度及不同过冷度下Cu52Co24Fe24合金摩擦系数随时间的变化曲线和平均摩擦系数
图8  不同磁场强度及不同过冷度下Cu50Co50和Cu52Co24Fe24合金摩擦系数随时间的变化曲线
图9  不同磁场强度及不同过冷度下Cu50Co50中富Co相以及Cu52Fe24Co24合金中富(Co, Fe)相的硬度
1 Uchida S, Kimura T, Nakamoto T, et al. Microstructures and electrical and mechanical properties of Cu-Cr alloys fabricated by selective laser melting [J]. Mater. Des., 2019, 175: 107815
2 Deng C K, Jiang H X, Zhao J Z, et al. Study on the solidification of Ag-Ni monotectic alloy [J]. Acta Metall. Sin., 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
2 邓聪坤, 江鸿翔, 赵九洲 等. Ag-Ni偏晶合金凝固过程研究 [J]. 金属学报, 2020, 56: 212
doi: 10.11900/0412.1961.2019.00192
3 Li Y F, Li S W, Wang Y R. Brief review on domestic research in iron-based wear-resistant materials [J]. Foundry Technol., 2022, 43: 389
3 李烨飞, 李书文, 王怡然. 国内铁基耐磨材料研究简述 [J]. 铸造技术, 2022, 43: 389
4 Sun Z B, Song X P, Hu Z D, et al. Liquid separating behavior of Cu-Co alloys under deep supercooling [J]. Chin. J. Nonferrous Met., 2001, 11: 68
4 孙占波, 宋晓平, 胡柱东 等. 深过冷条件下Cu-Co合金的液相分解 [J]. 中国有色金属学报, 2001, 11: 68
5 Liu S C, Jie J C, Zhang J J, et al. A surface energy driven dissolution model for immiscible Cu-Fe alloy [J]. J. Mol. Liq., 2018, 261: 232
6 Zhao J Z, Li H L, Li H Q, et al. Microstructure formation in centrifugally cast Al-Bi alloys [J]. Comput. Mater. Sci., 2010, 49: 121
7 Liu S C, Jie J C, Guo Z K, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions [J]. J. Alloys Compd., 2018, 742: 99
8 Peng Y L, Wang Q, Wang N. A comparative study on the migration of minor phase globule in different-sized droplets of Fe-58wt.%Sn immiscible alloy [J]. Scr. Mater., 2019, 168: 38
9 Wu Y Q, Li C J. Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements [J]. J. Appl. Phys., 2012, 111: 073521
10 Mullis A M, Jegede O E, Bigg T D, et al. Dynamics of core-shell particle formation in drop-tube processed metastable monotectic alloys [J]. Acta Mater., 2020, 188: 591
11 Zhang Y K, Gao J, Wei L L, et al. Novel insight into microstructural evolution of phase-separated Cu-Co alloys under influence of forced convection [J]. J. Mater. Sci., 2011, 46: 6603
12 Yang W, Chen S H, Yu H, et al. Effects of liquid separation on the microstructure formation and hardness behavior of undercooled Cu-Co alloy [J]. Appl. Phys., 2012, 109A: 665
13 Turchanin M A, Dreval L A, Abdulov A R, et al. Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu-Fe-Co system [J]. Powder Metall. Met. Ceram., 2011, 50: 98
14 Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state [J]. Acta Metall., 1958, 6: 704
15 Liu N, Liu F, Chen Z, et al. Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts [J]. J. Mater. Sci. Technol., 2012, 28: 622
16 Dai F P, Wang W L, Ruan Y, et al. Liquid phase separation and rapid dendritic growth of undercooled ternary Fe60Co20Cu20 alloy [J]. Appl. Phys., 2018, 124A: 20
17 Bai X J, Wang Y C, Cao C D. Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy [J]. Chin. Phys., 2018, 27B: 116402
18 Wei C, Wang J, He Y X, et al. Influence of high magnetic field on the liquid-liquid phase separation behavior of an undercooled Cu-Co immiscible alloy [J]. J. Alloys Compd., 2020, 842: 155502
19 Shuai S S, Wen S K, Guo R, et al. Research progress on solidification and nucleation of metals under magnetic fields [J]. Foundry Technol., 2022, 43: 699
19 帅三三, 温烁凯, 郭 锐 等. 磁场下金属凝固过程形核行为的研究现状 [J]. 铸造技术, 2022, 43: 699
20 Liu T, Wang Q, Yuan Y, et al. High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review [J]. Chin. Phys., 2018, 27B: 118103
21 Martin J E, Venturini E, Odinek J, et al. Anisotropic magnetism in field-structured composites [J]. Phys. Rev., 2000, 61E: 2818
22 Yan Y J, Wei C, He Y X, et al. Effect of high magnetic field on solidification microstructure evolution of a Cu-Fe immiscible alloy [J]. China Foundry, 2022, 19: 335
23 Wei C, Li J S, Yan Y J, et al. Effect of high magnetic field on the microstructure evolution behavior of undercooled Cu-Co alloy [J]. Foundry Technol., 2022, 43: 180
23 魏 晨, 李金山, 闫育洁 等. 强磁场对过冷Cu-Co合金组织演化行为的影响 [J]. 铸造技术, 2022, 43: 180
24 He Y X, Li J S, Li L Y, et al. Magnetic-field-induced chain-like assemblies of the primary phase during non-equilibrium solidification of a Co-B eutectic alloy: Experiments and modeling [J]. J. Alloys Compd., 2020, 815: 152446
25 Shoji E, Isogai S, Suzuki R, et al. Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification [J]. Scr. Mater., 2020, 175: 29
26 Wang J, He Y X, Li J S, et al. Experimental platform for solidification and in-situ magnetization measurement of undercooled melt under strong magnetic field [J]. Rev. Sci. Instrum., 2015, 86: 025102
27 Wei C, Wang J, He Y X, et al. Liquid-liquid phase separation in immiscible Cu-Co alloy [J]. Mater. Lett., 2020, 268: 127585
28 Wang W L, Hu L, Luo S B, et al. Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy [J]. Intermetallics, 2016, 77: 41
29 Sugioka K I, Inoue T, Kitahara T, et al. Study on the effect of melt convection on phase separation structures in undercooled CuCo alloys using an electromagnetic levitator superimposed with a static magnetic field [J]. Metall. Mater. Trans., 2014, 45B: 1439
30 Costa T A, Dias M, Freitas E S, et al. The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys [J]. J. Alloys Compd., 2016, 689: 767
31 Schouwenaars R, Jacobo V H, Ortiz A. Microstructural aspects of wear in soft tribological alloys [J]. Wear, 2007, 263: 727
32 Bowden F P, Leben L. The nature of sliding and the analysis of friction [J]. Proc. Roy. Soc., 1939, 169A: 371
33 Wang J, Li J S, Hu R, et al. Anomalous magnetism and normal field instability in supercooled liquid cobalt [J]. Appl. Phys. Lett., 2014, 105: 144101
34 Cruz K S, Meza E S, Fernandes F A P, et al. Dendritic arm spacing affecting mechanical properties and wear behavior of Al-Sn and Al-Si alloys directionally solidified under unsteady-state conditions [J]. Metall. Mater. Trans., 2010, 41A: 972
35 Wang M L, Lu Y P, Zhang G J, et al. A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding [J]. Vacuum, 2021, 184: 109905
36 de Alfaia M Â O, Oliveira R, Lima T S, et al. Effects of cooling rate and microstructure scale on wear resistance of unidirectionally solidified Al-3.2wt.%Bi-(1; 3) wt.%Pb alloys [J]. Mater. Today Commun., 2020, 25: 101659
[1] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[2] 曹姝婷, 赵剑, 巩桐兆, 张少华, 张健. Cu含量对K4061合金显微组织和拉伸性能的影响[J]. 金属学报, 2024, 60(9): 1179-1188.
[3] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[4] 朱绍祥, 王清江, 刘建荣, 陈志勇. TC19合金铸锭中ZrMo元素的宏观偏析行为[J]. 金属学报, 2024, 60(7): 869-880.
[5] 高新亮, 巴文月, 张正, 席仕平, 徐东, 杨志南, 张福成. 贝氏体轨道钢连铸凝固过程中溶质微观偏析模型及分析[J]. 金属学报, 2024, 60(7): 990-1000.
[6] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[7] 董士虎, 张红伟, 吕文朋, 雷洪, 王强. 基于界面追踪-动网格技术模拟凝固收缩下Fe-C合金宏观偏析[J]. 金属学报, 2024, 60(3): 388-404.
[8] 朱锐, 王俊杰, 张云虎, 田志超, 苗信成, 翟启杰. 复合磁场对金属熔体流动及凝固组织的影响[J]. 金属学报, 2024, 60(2): 231-246.
[9] 郭杰, 黄立清, 吴京洋, 李俊杰, 王锦程, 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 60(11): 1531-1544.
[10] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[11] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[12] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[13] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[14] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[15] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.