|
|
铝合金熔滴复合电弧增材组织演化及外延生长特性 |
耿汝伟1( ), 王林2, 魏正英3( ), 麻宁绪4 |
1 中国矿业大学 机电工程学院 徐州 221116 2 中国矿业大学 材料与物理学院 徐州 221116 3 西安交通大学 机械制造系统工程国家重点实验室 西安 710049 4 Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan |
|
Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy |
GENG Ruwei1( ), WANG Lin2, WEI Zhengying3( ), MA Ninshu4 |
1 School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China 2 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China 3 State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China 4 Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan |
引用本文:
耿汝伟, 王林, 魏正英, 麻宁绪. 铝合金熔滴复合电弧增材组织演化及外延生长特性[J]. 金属学报, 2024, 60(11): 1584-1594.
Ruwei GENG,
Lin WANG,
Zhengying WEI,
Ninshu MA.
Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy[J]. Acta Metall Sin, 2024, 60(11): 1584-1594.
1 |
Wu D J, Liu D H, Zhang Z A, et al. Microstructure and mechanical properties of 2024 aluminum alloy prepared by wire arc additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 767
doi: 10.11900/0412.1961.2021.00314
|
1 |
吴东江, 刘德华, 张子傲 等. 电弧增材制造2024铝合金的微观组织与力学性能 [J]. 金属学报, 2023, 59: 767
doi: 10.11900/0412.1961.2021.00314
|
2 |
Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeron. Manuf. Technol., 2018, 61(3): 74
|
2 |
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
|
3 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Astronaut., 2014, 35: 2690
|
3 |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
4 |
Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
|
4 |
顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
|
5 |
Chen J W, Xiong F Y, Huang C Y, et al. Numerical simulation on metallic additive manufacturing [J]. Sci. Sin. Phys. Mech. Astron., 2020, 50(9): 100
|
5 |
陈嘉伟, 熊飞宇, 黄辰阳 等. 金属增材制造数值模拟 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(9): 100
|
6 |
Xiao W J, Xu Y X, Song L J. Phase-field study on the evolution of microstructure of the molten pool for additive manufacturing [J]. Chin. J. Theor. Appl. Mech., 2021, 53(12): 11
|
6 |
肖文甲, 许宇翔, 宋立军. 面向增材制造的熔池凝固组织演变的相场研究 [J]. 力学学报, 2021, 53(12):11
|
7 |
Francois M M, Sun A, King W E, et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2017, 21: 198
|
8 |
Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium [J]. Mater. Sci. Technol., 2018, 34: 895
|
9 |
Wang L, Wei Y H, Yu F Y, et al. Phase-field simulation of dendrite growth under forced flow conditions in an Al-Cu welding molten pool [J]. Cryst. Res. Technol., 2016, 51: 602
|
10 |
Yu F Y, Wei Y H, Ji Y Z, et al. Phase field modeling of solidification microstructure evolution during welding [J]. J. Mater. Process. Technol., 2018, 255: 285
|
11 |
Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 101735
|
12 |
Wang L, Ma Y M, Xu J. Numerical simulation of arc-droplet-weld pool behaviors during the external magnetic field-assisted MIG welding-brazing of aluminum to steel [J] Int. J. Therm. Sci., 2023, 194: 108530.
|
13 |
Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosity formation modelling in selective laser melting [J]. Int. J. Heat Mass Transfer, 2019, 140: 1091
|
14 |
Zhang W B, Chen W, Chen D L, et al. Multi-scale numerical simulation of molten pool evolution process for electron beam selective melting [J]. Chin. J. Nonferrous Met., 2023, 33: 1413
|
14 |
张文斌, 陈 玮, 陈道梁 等. 电子束选区熔化增材制造熔池演化多尺度模拟 [J]. 中国有色金属学报, 2023, 33: 1413
|
15 |
Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J]. Addit. Manuf., 2021, 47: 102278
|
16 |
Du J, Wu Y X, Jiang M B, et al. Molten pool dynamics and particle migration Behavior during TIG-assisted droplet deposition manufacturing of SiC particle-reinforced aluminum matrix composites [J]. J. Mech. Eng., 2023, 59(3): 318
doi: 10.3901/JME.2023.03.318
|
16 |
杜 军, 吴云肖, 蒋敏博 等. TIG电弧辅助熔滴沉积增材制造SiCp增强铝基复合材料中的熔池动力学与颗粒迁移行为 [J]. 机械工程学报, 2023, 59(3): 318
|
17 |
He P F, Wei Z Y, Du J, et al. Investigation of droplet + arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy [J]. J. Mech. Eng., 2022, 58(5): 258
|
17 |
贺鹏飞, 魏正英, 杜 军 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究 [J]. 机械工程学报, 2022, 58(5): 258
doi: 10.3901/JME.2022.05.258
|
18 |
Michaleris P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes [J]. Finite Elem. Anal. Des., 2014, 86: 51
|
19 |
Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
|
20 |
Salerno G, Bennett C, Sun W, et al. On the interaction between welding residual stresses: A numerical and experimental investigation [J]. Int. J. Mech. Sci., 2018, 144: 654
|
21 |
Ramirez J C, Beckermann C, Karma A, et al. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion [J]. Phys. Rev., 2004, 69E: 051607
|
22 |
Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification [J]. Phys. Rev., 2004, 70E: 061604
|
23 |
Kang H, Song S J, Sul Y E, et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes [J]. ACS Nano, 2018, 12: 4894
doi: 10.1021/acsnano.8b01900
pmid: 29709175
|
24 |
Yu Y, Wang L, Zhou J, et al. Impact of fluid flow on the dendrite growth and the formation of new grains in additive [J]. Addit. Manuf., 2022, 55: 102832
|
25 |
Deschamps J, Georgelin M, Pocheau A. Growth directions of microstructures in directional solidification of crystalline materials [J]. Phys. Rev., 2008, 78E: 011605
|
26 |
Park J, Kang J H, Oh C S. Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy [J]. Mater. Des., 2020, 195: 108985
|
27 |
Wang J C, Guo C W, Li J J, et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall Sin, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
|
27 |
王锦程, 郭春文, 李俊杰 等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
|
28 |
Dong H B, Lee P D. Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys [J]. Acta Mater., 2005, 53: 659
|
29 |
Li H G, Huang Y J, Jiang S S, et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy [J]. Mater. Des., 2021, 197: 109262
|
30 |
Lenart R, Eshraghi M. Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy [J]. Comput. Mater. Sci., 2020, 172: 109374
|
31 |
Yang M, Wang L, Yan W T. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening [J]. npj Comput. Mater., 2021, 7: 56
|
32 |
Gao Y M. Principle of Metal Solidification [M]. Xi'an: Xi'an Jiaotong University Press, 2010: 72
|
32 |
高义民. 金属凝固原理 [M]. 西安: 西安交通大学出版社, 2010: 72
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|