Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1584-1594    DOI: 10.11900/0412.1961.2023.00331
  研究论文 本期目录 | 过刊浏览 |
铝合金熔滴复合电弧增材组织演化及外延生长特性
耿汝伟1(), 王林2, 魏正英3(), 麻宁绪4
1 中国矿业大学 机电工程学院 徐州 221116
2 中国矿业大学 材料与物理学院 徐州 221116
3 西安交通大学 机械制造系统工程国家重点实验室 西安 710049
4 Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy
GENG Ruwei1(), WANG Lin2, WEI Zhengying3(), MA Ninshu4
1 School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
2 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
3 State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
4 Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
引用本文:

耿汝伟, 王林, 魏正英, 麻宁绪. 铝合金熔滴复合电弧增材组织演化及外延生长特性[J]. 金属学报, 2024, 60(11): 1584-1594.
Ruwei GENG, Lin WANG, Zhengying WEI, Ninshu MA. Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy[J]. Acta Metall Sin, 2024, 60(11): 1584-1594.

全文: PDF(3635 KB)   HTML
摘要: 

金属增材制造可实现铝合金构件高性能一体化成形,其中熔滴复合电弧增材是一种高效、低成本的增材工艺。为了揭示其沉积过程中微观组织生长演变规律,从而优化工艺提升构件力学性能,本工作研究了2319铝合金沉积过程中的温度场分布、微观组织演化以及外延生长特性。首先,通过有限元结合生死单元法计算沉积过程中温度场并提取熔池不同位置的凝固参数,然后代入相场模型实现跨尺度耦合获得熔池不同位置微观组织生长演变过程,发现在熔池底部和中部区域形成柱状晶结构,在中上部出现从柱状晶向等轴晶转变的现象。同时在相场模型中引入取向偏差角,研究凝固过程外延生长特性,结果表明,取向偏差角越大,对枝晶形貌影响越明显,在竞争生长中越容易淘汰。金相分析显示从沉积层底部到上部,微观组织经历了从柱状晶到等轴晶的转变过程,并且柱状晶存在外延生长现象,与模拟结果吻合较好。

关键词 增材制造熔滴复合电弧沉积组织演变外延生长铝合金    
Abstract

Aluminum alloys are widely used in the automobile, rail transportation, and aerospace industries owing to their excellent properties such as low density, high thermal conductivity, and high specific strength. Metal additive manufacturing (MAM) enables the high-quality integrated forming of aluminum alloy components. Among the MAM techniques, droplet and arc additive manufacturing (DAAM) is a newly proposed method that offers advantages, such as high efficiency and low cost. In DAAM process, a droplet generation system is designed above the substrate fixed on a three-dimensional motion platform. Below the droplet generation system, an arc heat source with variable polarity is tilted. During the DAAM process, the metal droplets drop vertically and sequentially into the molten pool generated by the arc heat source to realize metallurgical bonding. Layer-by-layer deposition of aluminum alloy components is achieved by moving the substrate. This study focuses on the DAAM process for 2319 aluminum alloy. The temperature field distribution, microstructure evolution, and epitaxial growth characteristics were investigated. First, the temperature field distribution during the deposition process was calculated using the finite element method combined with element birth and death techniques. Based on the temperature field analysis, the solidification parameters at different positions of the molten pool were calculated. These parameters were then substituted into a phase field (PF) model to determine the growth and evolution of the microstructure at different positions in the molten pool. Columnar crystal structures were formed in the bottom and middle regions of the molten pool. From the bottom to the upper part of the molten pool, the temperature gradient decreased and the solidification speed increased. Therefore, columnar crystals to equiaxed transition occurred in the middle and upper regions. Additionally, misorientation angles were introduced in the PF model to investigate the epitaxial growth characteristics of the solidification process. Larger misorientation angles had a more obvious influence on dendrite morphology and were more likely to be eliminated during competitive growth. Finally, the metallographic analysis showed that from the bottom to the upper part of the deposition layer, the microstructure changed from columnar to equiaxed crystals, and the presence of columnar crystal epitaxial growth agreed well with the simulation results.

Key wordsadditive manufacturing    droplet and arc deposition    microstructure evolution    epitaxial growth    aluminum alloy
收稿日期: 2023-08-10     
ZTFLH:  TG40  
基金资助:国家自然科学基金项目(52205432);国家自然科学基金项目(52275376);中国博士后基金项目(2022M723375);江苏省自然科学基金项目(BK20221118);山东省自然科学基金项目(ZR2023QE232)
通讯作者: 耿汝伟,geng6294@cumt.edu.cn,主要从事金属增材制造组织性能相关的研究;
魏正英,weizhengying437@163.com,主要从事多能场金属增材制造理论及应用研究
Corresponding author: GENG Ruwei, Tel: 18292875966, E-mail: geng6294@cumt.edu.cn;
WEI Zhengying, professor, Tel: 13571946262, E-mail: weizhengying437@163.com
作者简介: 耿汝伟,男,1991年生,博士
图1  熔滴复合电弧增材制造工艺原理图与实验平台
图2  2319铝合金随温度变化的物性参数
图3  外延生长相场模型初始条件
图4  不同电流下沉积层温度场分布情况及沉积层中心点处温度变化曲线
图5  熔池内温度梯度(G)和凝固速率(V)分布
图6  熔池底部与中部微观组织生长过程
图7  凝固过程中柱状晶向等轴晶转变(CET)过程的微观组织生长状况及对应时刻温度场分布演化过程
图8  晶粒微观形貌与凝固条件的关系
图9  不同取向偏差角下凝固组织的生长过程
图10  熔滴复合电弧增材沉积层与横截面形貌
图11  沉积层不同位置微观组织的OM像
图12  枝晶生长的外延特性
1 Wu D J, Liu D H, Zhang Z A, et al. Microstructure and mechanical properties of 2024 aluminum alloy prepared by wire arc additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 767
doi: 10.11900/0412.1961.2021.00314
1 吴东江, 刘德华, 张子傲 等. 电弧增材制造2024铝合金的微观组织与力学性能 [J]. 金属学报, 2023, 59: 767
doi: 10.11900/0412.1961.2021.00314
2 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeron. Manuf. Technol., 2018, 61(3): 74
2 李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
3 Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Astronaut., 2014, 35: 2690
3 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
4 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
4 顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
5 Chen J W, Xiong F Y, Huang C Y, et al. Numerical simulation on metallic additive manufacturing [J]. Sci. Sin. Phys. Mech. Astron., 2020, 50(9): 100
5 陈嘉伟, 熊飞宇, 黄辰阳 等. 金属增材制造数值模拟 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(9): 100
6 Xiao W J, Xu Y X, Song L J. Phase-field study on the evolution of microstructure of the molten pool for additive manufacturing [J]. Chin. J. Theor. Appl. Mech., 2021, 53(12): 11
6 肖文甲, 许宇翔, 宋立军. 面向增材制造的熔池凝固组织演变的相场研究 [J]. 力学学报, 2021, 53(12):11
7 Francois M M, Sun A, King W E, et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2017, 21: 198
8 Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium [J]. Mater. Sci. Technol., 2018, 34: 895
9 Wang L, Wei Y H, Yu F Y, et al. Phase-field simulation of dendrite growth under forced flow conditions in an Al-Cu welding molten pool [J]. Cryst. Res. Technol., 2016, 51: 602
10 Yu F Y, Wei Y H, Ji Y Z, et al. Phase field modeling of solidification microstructure evolution during welding [J]. J. Mater. Process. Technol., 2018, 255: 285
11 Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 101735
12 Wang L, Ma Y M, Xu J. Numerical simulation of arc-droplet-weld pool behaviors during the external magnetic field-assisted MIG welding-brazing of aluminum to steel [J] Int. J. Therm. Sci., 2023, 194: 108530.
13 Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosity formation modelling in selective laser melting [J]. Int. J. Heat Mass Transfer, 2019, 140: 1091
14 Zhang W B, Chen W, Chen D L, et al. Multi-scale numerical simulation of molten pool evolution process for electron beam selective melting [J]. Chin. J. Nonferrous Met., 2023, 33: 1413
14 张文斌, 陈 玮, 陈道梁 等. 电子束选区熔化增材制造熔池演化多尺度模拟 [J]. 中国有色金属学报, 2023, 33: 1413
15 Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J]. Addit. Manuf., 2021, 47: 102278
16 Du J, Wu Y X, Jiang M B, et al. Molten pool dynamics and particle migration Behavior during TIG-assisted droplet deposition manufacturing of SiC particle-reinforced aluminum matrix composites [J]. J. Mech. Eng., 2023, 59(3): 318
doi: 10.3901/JME.2023.03.318
16 杜 军, 吴云肖, 蒋敏博 等. TIG电弧辅助熔滴沉积增材制造SiCp增强铝基复合材料中的熔池动力学与颗粒迁移行为 [J]. 机械工程学报, 2023, 59(3): 318
17 He P F, Wei Z Y, Du J, et al. Investigation of droplet + arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy [J]. J. Mech. Eng., 2022, 58(5): 258
17 贺鹏飞, 魏正英, 杜 军 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究 [J]. 机械工程学报, 2022, 58(5): 258
doi: 10.3901/JME.2022.05.258
18 Michaleris P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes [J]. Finite Elem. Anal. Des., 2014, 86: 51
19 Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
20 Salerno G, Bennett C, Sun W, et al. On the interaction between welding residual stresses: A numerical and experimental investigation [J]. Int. J. Mech. Sci., 2018, 144: 654
21 Ramirez J C, Beckermann C, Karma A, et al. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion [J]. Phys. Rev., 2004, 69E: 051607
22 Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification [J]. Phys. Rev., 2004, 70E: 061604
23 Kang H, Song S J, Sul Y E, et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes [J]. ACS Nano, 2018, 12: 4894
doi: 10.1021/acsnano.8b01900 pmid: 29709175
24 Yu Y, Wang L, Zhou J, et al. Impact of fluid flow on the dendrite growth and the formation of new grains in additive [J]. Addit. Manuf., 2022, 55: 102832
25 Deschamps J, Georgelin M, Pocheau A. Growth directions of microstructures in directional solidification of crystalline materials [J]. Phys. Rev., 2008, 78E: 011605
26 Park J, Kang J H, Oh C S. Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy [J]. Mater. Des., 2020, 195: 108985
27 Wang J C, Guo C W, Li J J, et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall Sin, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
27 王锦程, 郭春文, 李俊杰 等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
28 Dong H B, Lee P D. Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys [J]. Acta Mater., 2005, 53: 659
29 Li H G, Huang Y J, Jiang S S, et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy [J]. Mater. Des., 2021, 197: 109262
30 Lenart R, Eshraghi M. Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy [J]. Comput. Mater. Sci., 2020, 172: 109374
31 Yang M, Wang L, Yan W T. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening [J]. npj Comput. Mater., 2021, 7: 56
32 Gao Y M. Principle of Metal Solidification [M]. Xi'an: Xi'an Jiaotong University Press, 2010: 72
32 高义民. 金属凝固原理 [M]. 西安: 西安交通大学出版社, 2010: 72
[1] 于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
[2] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[3] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[4] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[7] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[8] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[9] 王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.
[10] 蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530.
[11] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.